Zadatak 1 (8 bodova)
U vertikalno postavljenom visokom cilindru nalazi se zrak temperature \(t_1 = 20^\circ \text{C} \), kolika je i temperatura okoline, a vanjski tlak zraka jednak je atmosferskom tlaku. Bočne stijenke cilindra su dobru toplinski izolatori, dok je donja osnovica cilindra dobar vodič topline. Zrak je s gornje strane zatvoren pomičnim čepom koji može klijiti unutar cilindra bez trenja, a napravljen je od toplinskog izolatora. U početnom trenutku čep je na visini od \(l = 10 \) cm od donje osnovice cilindra. Ako se donja osnovica cilindra počne zagrijavati izvorom topline konstantne temperature \(t_2 \), čep se nakon nekog vremena podigne za \(h = 20 \) cm. Kolika je temperatura izvora topline \(t_2 \)?

Zadatak 2 (10 bodova)
U cilindar ispunjen zrakom stavljen je \(m = 1 \) g olova. Cilindar je nakon toga zatvoren klipom zanemarive mase koji se može pomicati bez trenja. Vremenom olovo oksidira po formuli
\[2 \text{Pb} + \text{O}_2 \rightarrow 2 \text{PbO}, \]
a temperatura \(t \) i vanjski tlak \(p \) se drže konstantnim i iznose \(t = 25^\circ \text{C} \) i \(p = 101325 \) Pa. Za koliko se promijenio volumen zatvorenog dijela cilindra nakon završetka procesa oksidacije ako je početni volumen bio \(V_0 = 1 \)? Molarna masa olova je \(M_{\text{Pb}} = 207.19 \) g/mol, a volumen olova i nastalog oksida zanemarite u odnosu na volumen cilindra.

Zadatak 3 (11 bodova)
U vertikalnoj staklenoj cijevi unutarnjeg promjera \(D = 5 \) mm i duljine \(L = 1 \) m nalazi se napeta čelična žica iste duljine i promjera \(d = 2 \) mm. Gornji kraj žice priključen je na jedan pol izvora stalnog napona od \(U = 0.1 \) V, a donji kraj žice prolazi kroz dno staklene cijevi i priključen je na drugi pol izvora napona. U cijev se nalijeva živa. Otpornost čelične žice je \(p_r = 0.2 \times 10^{-8} \) \(\Omega \cdot \text{m} \), a otpornost žive je \(p_\text{ž} = 0.958 \times 10^{-4} \) \(\Omega \cdot \text{m} \).

a) Kolika je najveća i najmanja jakost struje koja može teći amperometrom A?
b) Kod koje će visine stupca žive \(x \), mjerenog od dna cijevi, ampermetar pokazivati struju od 2 A?

Zadatak 4 (9 bodova)
Zavojnice elektromagneta načinjene su od bakrene žice ukupnog otpora \(R = 4 \) \(\Omega \), a maksimalna struja koja može teći zavojnicama je \(I = 50 \) A. Masa zavojnice je \(M = 200 \) kg, a specifični toplinski kapacitet bakra je \(c_v = 390 \) J/(kgK).

a) Ako je maksimalna dozvoljena temperatura u zavojnicama \(t = 80^\circ \text{C} \), a temperatura okoline je \(t_0 = 20^\circ \text{C} \), za koliko bi vremena od uključenja elektromagneta došlo do oštećenja zavojnica uz pretpostavku da nema izmjene topline s okolinom?
b) Da bi sprječili oštećenje elektromagneta, tijekom njegova rada zavojnice se hlađe tekućom vodom. Ako je temperatura vode koja ulazi u sustav za hlađenje \(t_1 = 20^\circ \text{C} \), a maksimalna temperatura zavojnica je \(t_2 = 25^\circ \text{C} \), koliki mora biti najmanji protok vode u jednom satu izražen u m³/h? Specifični toplinski kapacitet vode je \(c_v = 4186 \) J/(kgK), a gustoća vode je \(p_v = 1000 \) kg/m³.

Zadatak 5 (12 bodova)
Na horizontalnoj žici od izolatora nalaze se tri metalne kuglice A, B i C, svaka polumjera \(r = 1 \) cm i mase \(m = 1 \) g. Kuglice A i B su uvrušene na žici i udaljenost njihovih središta je \(d = 1 \) m. Kuglica C se nalazi između kuglica A i B, ne dodiruje ih, te može klijiti po žici bez trenja. Kuglice A i B nabijemo tako da je naboj kuglice A \(q_A = 10^{-2} \) C, a kuglica B \(q_B = -10^{-2} \) C. Ako sada kuglicu C primaknemo kuglici A tako da se one dodiru, te je gustina, kolikom će brzinom kuglica C udariti u kuglicu B?
Rezultati zadataka 2. grupe (2000) i smjernice za bodovanje

Zadatak 1 (8 bodova)

Radi se o izobarnoj promjeni, \(T_1 = t_1 + 273.15 \) K, \(T_2 = t_2 + 273.15 \) K (priznati i 273 K):
\[
\frac{T_1}{V_1} = \frac{T_2}{V_2} \Rightarrow T_2 = \frac{T_1 V_2}{V_1}
\]
(2)

\(S \) je površina osnovice:
\[
V_i = S l
\]
(1)
\[
V_2 = S (l + h)
\]
(1)
\[
\Rightarrow \frac{V_2}{V_1} = \left(1 + \frac{h}{l} \right)
\]
(1)
\[
\frac{V_2}{V_1} = 3
\]
(1)
\[
T_2 = \left(1 + \frac{h}{l} \right) T_1 = 3T_1,
\]
(1)
\[
T_2 = 879.45 \text{ K} = 606.3 \text{ °C}
\]
(1)
ili:
\(\alpha = 1/273 \), \(V_\alpha \) je volumen plina pri 0°C:
\[
V_i = V_\alpha (1 + \alpha t_i)
\]
(2)
\[
V_2 = V_\alpha (1 + \alpha t_2)
\]
(2)
\[
V_i = S l
\]
(1)
\[
V_2 = S (l + h)
\]
(1)
\[
\Rightarrow \frac{V_2}{V_1} = \left(1 + \frac{h}{l} \right)
\]
(1)
\[
\frac{V_2}{V_1} = 3
\]
(1)
\[
\frac{V_2}{V_1} \left(1 + \alpha t_1 \right) - 1 = t_2 \left(1 + \frac{h}{l} \right) \frac{h}{k\alpha},
\]
(1)
\[
t_2 = 606.3 \text{ °C}
\]
(1)
Ako u međukoracima nisu računate numeričke vrijednosti već samo u konačnom rješenju, priznati sve bodove predviđene za dotični međukorak.

Zadatak 2 (10 bodova)

Iz kemijske formule slijedi da se 2 mola olova spaja s 1 molom molekule kisika i tvore 2 mola olovo(II)-oksida. Količina olova u cilindru je
\[
n_{nO} = \frac{m}{M_{nO}} = 4.826 \times 10^{-3} \text{ mol olova}
\]
(1)
\[
\Rightarrow \text{za potpunu oksidaciju potrebno je } n_{nO} = \frac{n_{nO}}{2} = 2.413 \times 10^{-3} \text{ mol O}_2
\]
(1)

Ukupan tlak je konstantan i jednak je \(p_i \), i on je zbroj parcijalnih tlakova kisika i dušika:
- na početku, \(p V = n RT = (n_1 + n_2) RT \)
(1)
- na kraju početka, \(p V = (n_{nO} + n_{nO}) RT \), gdje je \(n_{nO} = n_{nO} - n_{nO} \) preostala količina kisika
(1)
Kako dušik ne sudjeluje u reakciji, \(n_{\text{N}_2} = \frac{pV_0}{RT} - n_{\text{O}_2}, \) a

\[
V = \frac{(n_{\text{N}_2} + n_{\text{O}_2}^*)RT}{p} = V_0 - \frac{RT}{p} n_{\text{O}_2}^*
\]

\(V = 9.41 \times 10^{-4} \text{ m}^3 \)
što znači da se volumen cilindra smanjio za

\[
\Delta V = V_0 - V
\]

\(\Delta V = 5.9 \times 10^{-3} \text{ m}^3 = 0.059 \text{ l} = 59 \text{ cm}^3 \)

Zadatak 3 (11 bodova)

Čelična žica i stupac žive u cijevi čine sustav od tri otpora spojena kao na slici, gdje je \(R_1 \) otpor dijela žice duljine \((L-x)\) koji nije uronjen u živu, \(R_2 \) je otpor dijela žice duljine \(x\) uronjen u živu, a \(R_3 \) je otpor stupca visine \(x\) žive.

Ukupni otpor takvog spoja je

\[
R = R_1 + \frac{R_2 R_3}{R_2 + R_3}
\]

1) a) kako je struja \(I \) kroz ampermetar jednaka \(I = U / R \), najmanja vrijednost struje \(I_{\text{min}} \) postiže se za maksimalan otpor \(R_{\text{max}} = R_2 (x = 0) \), tj. kada nema žive (\(S_\text{c} \) je površina presjeka žice):

\[
R_{\text{max}} = \rho_\text{c} L / S_\text{c} = \rho_\text{c} \left(\frac{L}{\left(\frac{d}{2} \right)^2 \pi} \right) = 0.0637 \text{ } \Omega
\]

\(I_{\text{min}} = U / R_{\text{max}} = 1.57 \text{ A} \)

Najveća vrijednost struje postiže se kada je ukupni otpor minimalan, tj. kada je \(x = L \) (\(S_\text{c} \) je površina presjeka žive) i \(R_1 = 0 \):

\[
R_{\text{min}} = \frac{R_2 R_3}{R_2 + R_3} = 0.0304 \text{ } \Omega
\]

\(I_{\text{max}} = U / R_{\text{min}} = 3.29 \text{ A} \)

1) b) Ako je struja kroz ampermetar \(I = 2 \text{ A} \), tada je otpor \(R = U / I = 0.05 \text{ } \Omega \)

\[
R = R_1 + \frac{R_2 R_3}{R_2 + R_3} = \rho_\text{c} \left(L - x \right) + \left(\frac{\rho_\text{c} x}{S_\text{c}} \right) \left(\frac{\rho_{\text{Hg}} x}{S_{\text{Hg}}} \right)
\]

\[
x = \frac{\rho_\text{c} L}{\rho_\text{c} S_\text{c} - R} - \frac{\rho_{\text{Hg}}}{\rho_{\text{Hg}} S_{\text{Hg}} - \frac{1}{S_\text{c}}}
\]

\(x = 0.41 \text{ m} = 41 \text{ cm} \)
Ako u zadatku pri računanju površine presjeka žive nije u obzir uzeta nezanemariva površina presjeka žice, a zadatak je inače korektan, oduzeti tri boda.

Zadatak 4 (9 bodova)

a) Toplina razvijena prolaskom struje kroz zavornicu u vremenu τ mora biti jednaka promjeni količine topline zavornica:

$$I^2 R \tau = M c_s (t - t_0)$$

$$\tau = \frac{M c_s (t - t_0)}{I^2 R}$$

$\tau = 468 \text{ s} = 7 \text{ min} 48 \text{ s}$

b) Voda za hladnjenje mora adsorbirati razvijenu toplinu (m je masa vode, $\Delta t = t_f - t_i$):

$$I^2 R\Delta t = mc_c \Delta t$$

$$\Rightarrow I^2 R = \frac{m}{\Delta t} c_c \Delta t$$

$$\frac{m}{\Delta t} = \frac{I^2 R}{c_c(t_f - t_i)}$$

$$\frac{m}{\Delta t} = 0.4778 \text{ kg/s} = 1720 \text{ kg/h}$$

Volumen vode u jednom satu je $\frac{m}{\rho_c \Delta t} = 1.72 \text{ m}^3/\text{h}$.

Zadatak 5 (12 bodova)

U trenutku dodira kuglice A i C, naboja q_A se jednako raspodjeljuje na obje kuglice:

$q_A' = q_c = \frac{q_A}{2}$

Vrijedi zakon očuvanja energije. Potencijalna energija E_c kuglice C u trenutku dodira s kuglicom A jednaka je zbroju potencijalne energije E_c' kuglice u trenutku sudara s kuglicom B i kinetičke energije kuglice C u tom trenutku ($k = 9 \times 10^3$):

$$E_c = E_c' + \frac{mv^2}{2}.$$ \hspace{1cm} (1)

$$E_c = k \frac{q_A q_C}{2r} + k \frac{q_B q_C}{d - 2r}$$ \hspace{1cm} (2)

$$E_c' = k \frac{q_A' q_C}{d - 2r} + \frac{q_B q_C}{2r}$$ \hspace{1cm} (2)

$$\Rightarrow v^2 = \frac{k}{2m} \frac{d - 4r}{r} \left(\frac{q_A}{2} - q_B \right)$$ \hspace{1cm} (2)

$$v = 2.57 \times 10^{-3} \text{ m/s} = 2.57 \text{ mm/s}.$$ \hspace{1cm} (1)

Ako u izrazima za potencijalnu energiju dimenzija kuglica zanemirena prema d, a zadatak je inače korektan, oduzeti četiri boda.