
SIMULATION OF ISING SPIN MODEL
USING CUDA

MIRO JURIŠIĆ

Supervisor: dr.sc. Dejan Vinković

Split, November 2011

Master Thesis in Physics

Department of Physics
Faculty of Natural Sciences and Mathematics

University of Split

Abstract

This thesis is about the utilization of Graphics Prossing Units (GPUs) for simulating the Ising spin
model. The simulated problem is a simple one, but it can be used as a basis for more complex problems.
This subject was chosen in order to explore the possibilities of the next generation of supercomputers
that are utilizing numerical accelerators such as GPUs. Namely, GPUs are built for graphics, but they
can also be used for general computation in science simulations. CUDA architecture enables a simple
implementation of C/C++ codes on both CPUs and GPUs, and their intercommunication. In this thesis
we calculated energy, magnetization, specific heat and magnetic susceptibility for various lattice sizes
in the Ising model. Typical speed ups achieved by GPUs in comparison to CPUs in our simulations are
factors between 50 and 200.

Miro Jurǐsić – Simulation Ising spin using CUDA 1

1 Introduction

Ising model was proposed in 1920 by Wilhelm Lens as a problem to his student Ernest

Ising for modeling the (anti-) ferromagnetic systems[1]. Today, the Ising model is a widely

used standard model of statistical physics. About 800 papers are being published every

year that use this model to address problem in such diverse fields as neural networks,

protein folding, biological membranes, social behavior and economics[2]. In introduction

we show the significance of this model through basics of statistical mechanics and through

description of the exact solution. In a further section, some computational aspects relevant

for this thesis will be mentioned.

1.1 Statistical mechanics

The essential purpose of statistical mechanics is to understand the behavior of macroscopic

physical systems by looking at its microscopic structure. In addition to macroscopic states

introduced by thermodynamics, statistical mechanics introduces microstates, or configu-

rations. Macroscopic states are defined by a few thermodynamical quantities, such as

pressure and density, while microscopic states are specified by dynamical variables of all

its constituents. Generally this leads to an extremely large number of degrees of freedom,

which in almost all cases makes it impossible to find an exact solution. Nevertheless, statis-

tical mechanics is able to give predictions of the systems behavior by means of a probability

theory and statistics. To be able to use apparatus of probability theory, new concepts were

introduced. Partition function is one of them, the general form for a classical system is

defined as

Z =
∑

all states

e−H/kbT (1)

where H is the Hamiltonian for the system, T is the temperature, and kb is the Boltz-

mann constant. Partition function contains essential information about the system under

consideration and it is directly connected to other thermodynamical quantities. Form of

partition function (1) shows dependences upon the size of the system and the number of

degrees of freedom for each particle. Only in a few cases, where the interactions between

particles are simple, evaluation of the partition function is possible. The probability of

any particular microstate or configuration is also connected to the partition function. The

Miro Jurǐsić – Simulation Ising spin using CUDA 2

probability that the system is in particular state µ is given by

Pµ = e−Hµ/kbT/Z (2)

Probability of a particular state is very important for the evolution of the system and

for the Monte Carlo method, i.e. numerical method that uses random number, which is

explained in more detail in the next chapter. The connection between statistical mechanics

and thermodynamics is illustrated by

F = −kbT lnZ (3)

where F is the free energy of the system and all other thermodynamic quantities can be

calculated by appropriate differentiation of Eqn.(3). For an example, internal energy U

can be obtained from the free energy via

U = −T 2∂(F/T)/∂T. (4)

Since the number of different microstates is usually huge, we are not only interested in

probabilities of individual microstates, but also in probabilities of macroscopic variables

that can be measured in an experiment. For example, relation for the specific heat CV can

be found by looking at the fluctuation of an internal energy. The average energy is denoted

Ū and U is a fluctuating quantity that corresponds to the energy of particular microstate.

They are connected trough moments

Ū(β) = 〈H(µ)〉 ≡
∑
µ

PµH(µ) (5)

〈H2〉 =
∑
µ

H2Pµ (6)

and note the relation −(∂U(β)/∂β)V = 〈H2〉 − 〈H〉2 where β = 1/kbT . The specific

heat thus yields a fluctuation relation CV = (∂U/∂T)V and

kbT
2CV = 〈H2〉 − 〈H〉2 = 〈(4U)〉NV T 4U ≡ H − 〈H〉 (7)

Miro Jurǐsić – Simulation Ising spin using CUDA 3

1.2 Order parameter

Order parameter is some property of the system that is non-zero in the ordered phase

and identically zero in the disordered phase. The order parameter is defined differently in

different kinds of physical systems. Depending on the physical system, an order parameter

may be measured by a variety of experimental methods. For example, in liquid crystals

where order parameter is an orientation order it can be measured by scattering methods.

An order parameter may be a scalar quantity or may be a multicomponent or even complex

quantity. Phase transitions of a system can be described as a transition between disordered

state and one which was non-zero order parameter at some finite temperature, the tran-

sition temperature TC . If the first derivatives of the free energy are discontinuous at the

transition temperature Tc , the transition is termed first order. If the first derivatives of the

free energy are continuous, but the second derivatives of the free energy are discontinuous

at the transition temperature, the transition is termed second order.

1.3 Ising model

Ising model is a simple model which is used to describe magnetic system. It postulates a

periodic d-dimensional lattice, that is made up of magnetic dipoles, each of them associated

with a spin si, where i represent lattice site. It is assumed that the spins can either be

up or down with the value +1 associated with up and the value -1 associated with down.

Hamiltonian of a system is

E = H = −J
N∑

<kl>

sksl − B
N∑
k

sk (8)

where J is a coupling constant, 〈kl〉 is a sum over nearest neighbors, B is an external

magnetic field and N is the number of magnetic dipoles in a system. Coupling constant

J denotes the strength of the coupling between adjacent spins and depending of its sign,

system can prefer ferromagnetism (J > 0) or anti - ferromagnetism (J < 0). The first

solution for Ising model was given by Ernst Ising itself, but only for one dimensional

problem(d=1). In the first dimension Ising model does not exhibit a phase transition,

while in the higher dimensions there exists the transition temperature TC , above which

Miro Jurǐsić – Simulation Ising spin using CUDA 4

order parameter is zero. Order parameter for ferromagnetic coupling is magnetization M

M =
∑
all i

si (9)

and for anti - ferromagnetic coupling is a sum over every second magnetic dipole. Ising

model has a second order phase transition, so quantities like the heat capacity CV and the

susceptibility χ are discontinuous or diverge at the critical point in the thermodynamic

limit, i.e., with an infinitely large lattice. For a finite lattice however, CV and χ will

not exhibit a diverging behavior, but they will however show a broad maximum near

TC . Similar to connection of variance of internal energy to heat capacity(7), relation for

magnetic susceptibility is

χ =
1

kbT
〈(4M)〉 =

1

kbT
(< M2 > − < M >2). (10)

A probability distribution used to evaluate expressions for heat capacity and magnetic

susceptibility is given by the Boltzmann distribution

Pi(β) = e(−βEi)/Z (11)

with β = 1/kBT being the inverse temperature, Ei is the energy of a microstate i while Z

is the partition function(see equation 1). Looking at probability distribution it is easy to

notice that temperature is used as a parameter and that this is the canonical ensemble.

1.3.1 Exact solution of the 2D Ising model on finite squared lattices

The first solution of two dimension Ising model in zero external magnetic field was proposed

by L.Onsager [3] in 1944. This solution is valid only in the thermodynamic limit and

because in simulation we always have finite sized lattices more appropriate solution is

given by A. E. Ferdinand and M. E. Fisher [4] that concerns problem with finite size

effects. Canonical partition function Zmn of a finite m x n square lattice with periodic

boundary condition in a zero external magnetic field is

Zmn(T) =
1

2
(2sinh(2K))

1
2
mn

4∑
i=1

ZiK, (12)

where K is defined as K = J/kbT . The partial partition functions Zi are defined as

Z1 =
n−1∏
r=0

2cosh
1

2
mγ2r+1; Z2 =

n−1∏
r=0

2sinh
1

2
mγ2r+1; Z3 =

n−1∏
r=0

2cosh
1

2
mγ2r; Z4 =

n−1∏
r=0

2sinh
1

2
mγ2r

(13)

Miro Jurǐsić – Simulation Ising spin using CUDA 5

Figure 1: The specific heat per
spin C(T) for small Ising lat-
tices with boundary condition
in a zero magnetic field ac-
cording to A.E.Ferdinand and
M.E.Fisher[4] for mxn square
lattice with m = n =
2, 4, 8, 16, 32 and 64(N = mn).

where

coshγl = cosh2Kcoth2K − cos(lπ/n). (14)

The internal energy per spin is given by

Umn
mn

= −(mn)−1J
d

dK
lnZmn (15)

= −Jcoth2K − J

mn
[

4∑
i=1

Z ′i][
4∑
i=1

Zi]
−1

while the specific heat per spin is

Cmn
kBmn

= (mn)−1K2 d2

dK2
lnZmn (16)

= = −2Kcosch2(2K) +
K2

mn
[

∑4
i=1 Z

′
i∑4

i=1 Z
′′
i

− (

∑4
i=1 Z

′
i∑4

i=1 Zi
)2]

where the primes denote differentiation with respect to K.

1.4 HPC - High Performance Computing

Term high performance computing is used for computing on supercomputers and large

clusters and objective of this section is to show increasingly important role of massively

Miro Jurǐsić – Simulation Ising spin using CUDA 6

parallel computing. By definition, parallel computing is a simultaneous use of multiple

compute resources to solve a computational problem. At this moment, supercomputers are

in petascale range (1015 FLOPS), with attendance to reach exascale range(1018 FLOPS)

by the year 2018[5]. Most of the software that are in use today are programmed for single

CPU machines. These programs are said to be serial, because instructions are executed

one after another.

1.4.1 Flynn’s taxonomy

Flynn’s taxonomy[6] classifies computer architecture depending on a number of concur-

rent instructions and data streams. For single instruction architecture there is only one

instruction stream running on CPU during any clock cycle. Likewise, for single data there

is only one data stream as input data during any clock cycle. For multiple instruction com-

puter architectures have multiple processors and every processor may execute a different

instruction stream independently of each other. For multiple data there are also multi-

ple processors and every processor may work with a different data stream with same or

different instructions. Every computer architecture belongs into one of these four classes.

SISD Single Instruction, Single Data MISD Multiple Instruction, Single Data
SIMD Single Instruction, Multiple Data MIMD Multiple Instruction, Multiple Data

1.4.2 Parallel Computer Memory Architectures

Parallel computer architectures have more than one core on a single CPU, where each have

some small amount of memory so it can function properly. Next to these small memory

parts there is usually a much larger memory card that can accommodate huge amount of

data needed for simulations. Depending on memory resources per single CPU there are

shared, distributed or hybrid memory architectures[7].

Shared memory architecture means that multiple processors share the same memory re-

sources as global address space and that changes in a memory are visible to all processors.

Advantage of this architecture is fast data sharing between processors, but sharing of

memory space means that programmer needs to synchronize usage of this memory space

Miro Jurǐsić – Simulation Ising spin using CUDA 7

Figure 2: Schematic view of shared memory architecture

to ensure that processors are using correct data. Main disadvantage is the lack of scala-

bility between memory and CPUs. By increasing number of CPUs, traffic on the shared

memory-CPU path increases and this can slow down system because of memory manage-

ment.

Unlike shared memory systems, distributed memory systems have processors with

their own inter-processor memory. These systems require a communication network to

connect different processors local memories. There is no concept of global address space

across all processors and each processor operates independently. Changes in local memory

have no effect on the memory of other processors so there is no worry about accessing

correct data like in shared memory. To access data of another processor, programmer

needs to explicitly define how, when and which data is communicated. Main advantage of

this system is disadvantage of shared system, namely scalability with number of processors,

because of local memory increasing number of processors will also increase size of memory.

Other advantage is a fast access to local memory in comparison to communication with

memory using some interface. Main disadvantage are communication mechanisms that are

needed to share data among different processors.

The largest and fastest computers in the world today employ hybrid memory archi-

tecture. They have advantages and disadvantages same as shared and distributed memory

architectures. The shared memory component is usually machine that can be addressed

as global memory, while the distributed memory component is the networking of multiple

processors with their own memory.

Miro Jurǐsić – Simulation Ising spin using CUDA 8

Figure 3: Schematic view of distributed memory architecture

Figure 4: Schematic view of hybrid memory architecture.

1.4.3 Parallel programming models

Parallel programming models are abstraction above hardware and memory architectures.

There are several models that are used often like shared-memory (OpenMP), message

passing (MPI), threads. These models are not specific to a particular type of machine or

memory architecture and any model can theoretically be implemented on any hardware.

All these models have some mechanisms to allow communication among processors. For

example, in the shared-memory programming model all processors have the same global

address space, which they read and write asynchronously and there is a need for locks

to control access to the shared memory. In a message passing programing model there

is a mechanism of messages and processors that communicate by sending and receiving

messages.

Miro Jurǐsić – Simulation Ising spin using CUDA 9

1.4.4 CUDA and TOP500

CUDA is not only a parallel programming model, rather it is a new programming architec-

ture. It is new hardware and software design connected to boost effectiveness of a graphics

cards manufactured by NVIDIA, explained in more details in section 3. In 1993, because

of the competition between manufacturers and users of supercomputers, high-performance

computing community decided to assemble and maintain a list of the 500 most powerful

computer systems. This list has been updated twice a year since June 1993 with the as-

sistance of computational scientists, manufacturers and the Internet community. In the

present list, which is called the TOP500[8], computers are ranked by their performance

on the LINPACK Benchmark[9]. The LINPACK software solves a dense system of linear

equations. Used benchmark allows the user to scale the size of the problem and to optimize

the software in order to achieve the best performance for a given machine. This perfor-

mance does not reflect the overall performance of given system, as no single number ever

could. It does, however, reflect the performance of dedicated system for solving a dense

system of linear equations. Since the problem is very regular, the performance achieved is

quite high, and the performance numbers give a good correction of peak performance.

Miro Jurǐsić – Simulation Ising spin using CUDA 10

Figure 5: Top500 list from June 2011. shows that the second place holds supercomputer
accelerated by NVIDIA GPU.

Miro Jurǐsić – Simulation Ising spin using CUDA 11

2 Monte Carlo methods in Statistical mechanics

Since Statistical mechanics deals with systems with large number of degrees of freedom,

the basic idea is to use computer simulation to explicitly follow trajectory of a system. For

physically meaningful boundary conditions and particle interaction, trajectory will simulate

the behavior of a real assembly of particles and statistical analysis of the trajectory will

determine meaningful predictions of properties of the assembly. There are two classes of

methods in Statistical mechanics. One is called Molecular dynamics, it considers classsical

dynamical model of atoms and trajectory is formed by intergrating Newton’s equations

of motion. This method provides dynamical properties as well as statistical properties

in equilibrium. The other, Monte Carlo method, cannot give dynamical proterties of a

system, but it is applicable to wider range of problems like quantum systems and lattice

model (Ising model).

2.1 A Monte Carlo trajectory

A trajectory is a chronological sequence of configurations for a system or path in a configu-

ration space. For Ising model, configuration is the list of spin variables, ψ = (s1, s2,, sN),

and trajectory is ψ(t), where t represents number of steps. Configuration properties change

as trajectory progress. An average value of a property Gψ = G(s1, s2, ..., sN) over configu-

rations visited during a trajectory with T steps is

〈G〉 =
1

T

T∑
t=1

Gψ(t). (17)

In Monte Carlo method, trajectory is produced in such manner that thermal equilibrium

averages are given by

〈G〉 = lim
T−>inf

〈G〉T (18)

Because trajectories are performed only for a finite time, an average over configurations

will provide only estimate of real average. For Eqn.(18) to be true, the trajectories need to

be ergodic. It means that if we simulate system for long enough all configurations will be

visited, no matter of probability of particular configuration. The Monte Carlo method is a

method for performing random walk through configuration space. Size of a configuration

Miro Jurǐsić – Simulation Ising spin using CUDA 12

space is in the most cases astronomically large. For two-dimensional Ising model, with

lattice size 10x10, number of configurations is 2100 > 1025. Straightforward sampling of

all configurations would be impractical, even for lattice sizes 10x10, so there are methods

that would sample representative fraction of configuration space. Improved Monte Carlo

trajectory is a random walk trough the states that are statistically most important, so

called importance sampling method. Statistically unimportant configurations are the ones

with negligible weight in Boltzmann distribution.

2.2 Markov process

Since Monte Carlo steps are not truly dynamical steps in time, but rather artificial steps,

there is a great deal of flexibility in choosing particular algorithm to perform random walk,

but there are also some constrains that can be explained trough Markov process. All Monte

Carlo algorithms are based on Markov processes in order to move in configuration space. A

Markov process is a random walk with a selected probability for making a move and with

independence on the previous steps, with independence of the history of the system[10].

Repeated use of the Markov process produces a so-called Markov chain. The Markov

process needs to obey two important conditions, that of already mentioned ergodicity and

detailed balance. These conditions are only constrains on our algorithms for accepting or

rejecting random moves. To check these conditions, probabilities P (j− > i) for the system

to be in state i after previously having been in state j is introduced. At each step the

system must go somewhere, so condition∑
i

P (j− > i) = 1 (19)

is satisfied. Detail balance condition ensures that the correct equilibrium distribution will

be simulated. From definition of being in equilibrium comes expression∑
j

W (j− > i)wj =
∑
i

W (i− > j)wi (20)

where W (j− > i) is a transition rate for crossing from configuration j into configuration i

while wi is a probability of configuration i. This condition, that the rates are equal going

from and to a given state i are in general not sufficient to guarantee that after finite number

of simulation steps we will reach the correct distribution. So there is stronger condition,

Miro Jurǐsić – Simulation Ising spin using CUDA 13

the condition of detailed balance

W (j− > i)wj = W (i− > j)wi. (21)

For the purpose of later calculation, more appropriate form of detailed balance condition

is
W (j− > i)

W (i− > j)
=
wi
wj

(22)

2.3 Metropolis algorithm for Ising model

The Metropolis algorithm is particular Markov chain Monte Carlo method for obtaining a

sequence of random samples from the Boltzmann probability distribution[10]

wi =
exp(−β(Ei))

Z
. (23)

Including expression for Boltzmann distribution(23) in to detailed balance(22), we get

wi
wj

= exp(−β(Ei − Ej)). (24)

Since we do not know the analytic form of the transition rate between configuration, we

are free to model it as

W (i− > j) = g(i− > j)A(i− > j) (25)

where g is a selection probability while A is the probability for accepting a move. Since all

possible spin orientations are equally likely to appear, the selection probability is propor-

tional to inverse number of spins N , namely

g(i− > j) =
1

N
(26)

Since the selection ratio is the same for both transitions, the detailed balance gives

A(j− > i)

A(i− > j)
= exp(−β(Ei − Ej)) (27)

To perform random walk through configuration space, rule for performing a move and for

accepting or rejecting it is needed. There are various algorithms that satisfy the detailed

balance conditions and ergodicity. The Metropolis algorithm has a

A(j− > i) =

{
exp(−β(Ei − Ej)) if Ei − EJ > 0
1 else

(28)

Miro Jurǐsić – Simulation Ising spin using CUDA 14

rule for accepting or rejecting a move. It says, if the move is energetically favorable it is

accepted 100%, and if it is not, probabilities of accepting a move is exp(−β(Ei − Ej)).

Simple Metropolis algorithm is shown in Algorithm 1, where selection of a spin s[x][y] at

location (x,y) that changes its orientation is randomly chosen. Since energy contribution of

a single spin depends only of its nearest neighbours, there is no need to perform loop over all

spins for calculating new energy and magnetization of a new configuration after accepting

spin change. To deal with this problem, only contribution of a chosen spin for energy and

magnetization prior and after spin change are needed, Enew = Eold +E[x][y] new −E[x][y] old

and Mnew = Mold +M[x][y] new −M[x][y] old.

Algorithm 1 Metropolis algorithm for two-dimensional lattice of size N. s[x][y] represents
spin at location (x,y). 4E is energy difference between new state and old state.

x⇐ random[0, N − 1]
y ⇐ random[0, N − 1]
s[x][y]∗ = −1
calculate 4E
if exp(−4E/T) >= random[0, 1] then
Eold ⇐ Enew
Mold ⇐Mnew

else
s[x][y]∗ = −1

end if

Miro Jurǐsić – Simulation Ising spin using CUDA 15

3 GPGPU - General Purpose Computation on Graph-

ics Processing Units

Graphics processing unit (GPU) was originally developed for fast output of images onto

computer display. Thanks to market demand for high-quality and real time graphics in

computer applications, there is a huge advancement in graphics performance over the last

few decades. First graphics hardware were expensive large systems, which evolved into

small inexpensive PC accelerators. Performance increased from 50 million pixels per second

to 1 billion pixels per second and from 100,000 vertices per second to 10 million vertices per

second[11]. Performance increase is not only due to shrinking of semiconductor devices,

they also have resulted from innovations in graphics algorithms and hardware design.

3.1 Graphics cards architecture

Early stage hardware design was a fixed-pipeline hardware that was configurable but not

programmable. Configurable means that application from CPU could send different data

and different commands, but they would follow always the same processing steps. The

commands are given by calling an API functions. An API is a standardized layer of soft-

ware, that allows application to use software or hardware services. The most used graphics

APIs are DirectX(from Microsoft) and OpenGL(open source). Each next generation in-

troduced additional hardware resources that would add additional reconfigurability to the

device and new series of APIs, but built-in functions were not enough for ever more so-

phisticated application demands. The evolution path of graphics processors to an array

of unified processors was natural, while at certain stages, graphics processors do a great

deal of floating-point arithmetic on a completely independent data that can be exploited

by hardware parallelism. Hardware parallelism is a reason for such a difference in design

between GPU and a CPU(figure 6) and also in performance difference(figure 7). Even

though programmability and performance increased, usability of GPU for general purpose

computation was low because of time needed to be spend on writing codes. To write a

code in DirectX or OpenGL, programmer needed to know a lot about graphics libraries

and also programmer needed to convert data into pixels, so that GPU can process them.

It was time consuming, until programming architecture like CUDA appeared.

Miro Jurǐsić – Simulation Ising spin using CUDA 16

Figure 6: GPU is specialized for computer-intensive, high parallel computation and there-
fore designed such that more transistors are devoted to data processing rather that data
cache and flow control as in CPUs.

Figure 7: Floating point operations per second theoretical peak performances. GPU out-
performs CPU almost 1:6

Miro Jurǐsić – Simulation Ising spin using CUDA 17

Figure 8: An example of a program structure that calls two kernel functions. Sequen-
tial part has only one thread line, while kernel has many threads distributed on device
multiprocessors.

3.2 CUDA - Compute Unified Device Architecture

CUDA is a programing computer architecture developed by NVIDIA to simplify usage

of GPU for developers with no prior experience with graphics. NVIDIA has built a new

hardware and software architecture which can perform both traditional graphics-rendering

tasks and general-purpose tasks. CUDA was first built into the card GeForce 8800, in

November 2006. CUDA comes with a software environment that allows developers to

use several high-level programming languages and or to use application programming in-

terfaces. CUDA supports CUDA C, CUDA FORTRAN, OpenCL, and DirectCompute.

CUDA C is a minimum extension of a standard C and at its core are three key abstrac-

tions: memory hierarchy, thread hierarchy and barrier synchronization.

3.2.1 Program structure

Even though figure 7 shows that GPUs can do more floating-point operations per second, it

does not mean that CPUs will not outperform GPUs in some tasks. These are theoretical

peak performances tested with highly regular and parallel problems. By looking at figure 6,

one could guess that CPUs will perform better at problems that do not exhibit parallelism

because of bigger and highly sophisticated control unit as well as larger cache, compared

Miro Jurǐsić – Simulation Ising spin using CUDA 18

to GPU. The main idea of GPGPU is to use both CPU and GPU together as a hybrid

system. Problem is divided into parts that exhibit high parallelism and run it on GPU,

while rest of the program would run on CPU. A CUDA program is a unified source code

that is a mix of both host and device code. The NVIDIA C compiler nvcc separates host

from device code during the compilation process. The host code is further compiled with

the hosts standard C compilers and executed on CPU. The device code is further compiled

by the nvcc and executed on a GPU device. Schematic view of example program that runs

on both host and device is shown in figure 8. At first, serial part of program runs on the

host, after which function that runs on device is called and, when it finishes execution, it is

back on the host. Then another function is called that runs on the device. To distinguish

which a function is going to run on device and which on host, CUDA has a special function

type qualifiers.

• without qualifier, a function is by default host function

• host a function that will run only on host and that is callable only from host

function

• global a function that will run on the device and is callable from the host only.

Such function is also called kernel.

• device a function that will run on the device and it is callable only from the device

function

Functions that run on the device have more restriction on their definitions than standard C

functions. For instance global functions must have void return type and do not support

recursion. device and global functions cannot have a variable number of arguments

and cannot declare static variables inside their body. One can check all restriction in

CUDA C programming guide[12].

3.2.2 Memory transfer and memory hierarchy

Host and the device are separate devices, each having its own memory spaces. Host cannot

view data on the device and vice versa. To use device processing resources, one needs first

Miro Jurǐsić – Simulation Ising spin using CUDA 19

to allocate memory space on the device, then send data from host memory space to the

device memory space, then resulting data needs to be copied from the device memory space

to the host memory space and the last step is to deallocate device memory space. For these

data management tasks, CUDA programmer uses runtime API functions cudaMalloc() for

allocation, cudaMemcpy() for copying data from and to host and from and to device, and

cudaFree() for deallocating memory. Description of these API functions and all others are

in NVIDIA CUDA Library Documentation[13]. Focusing just on device memory, one finds

several levels of memory that a programmer can use. To optimize performance of device

code programmer must know several facts about each memory level. Programmer needs to

know the size of memory level, speed of access, scope of data residing on specific memory

level, permissions to write and read data and lifetime of data. Some of these necessary

informations depend on a graphics card[13] while others are mentioned here:

Global memory - variable qualifier device

Global memory is the largest memory space on the device and every streaming multi-

processor(SM), defined in Section 3.2.3., have exclusive right to read and write data,

but also host has right to read and write data. This means that most communications

and data gathering between host and the device will be through global memory. It

takes 400 to 600 clock cycles of memory latency to access data on global memory by

multiprocessor. Scope of data residing in global memory is entire grid(explained in

Section 3.2.3) and lifetime is application execution time.

Local memory - variable qualifier local or array without qualifier

Local memory also resides on device and can be accessed by only specific multipro-

cessor. This memory is usually generated automatically by compiler when data that

are set for registers is larger that available memory space. This can lead to major

slowdown of a simulation because local memory is just a part of global memory and

likewise has the same memory latency. Scope of data is particular thread and lifetime

is the same as lifetime of that particular thread.

Shared memory - variable qualifier shared

Shared memory is on-chip and that makes it much faster than the local and global

memory spaces. Since each multiprocessor has its own shared memory only scalar

processors that reside on that specific multiprocessor have acess to this memory space.

Miro Jurǐsić – Simulation Ising spin using CUDA 20

Figure 9: Memory hierarchy of hybrid system. Arrows show writing and reading permis-
sions between memory levels.

Scope shared memory is inside a block(Section 3.2.3) and lifetime is kernel execution

time.

Constant memory - variable qualifier constant

Constant memory is also on-chip memory space. Its memory latency has the same

number of clock cycles as shared memory. Unlike shared memory accessed for writing

has exclusively only host while device can only read this data. This memory space

is usually used for often used constants needed for simulation. Scope of constant

memory is entire grid and lifetime is application execution time.

Registers - variable without qualifiers(accept arrays)

Registers are memory space that are specific for each scalar processor so each pro-

cessor has right to write and read from only its own 32 bit registers. Variable type

qualifiers specify the memory location on the device of a variable. Scope is particular

thread and lifetime is kernel execution time.

Miro Jurǐsić – Simulation Ising spin using CUDA 21

Figure 10: Grid launch is a multidimensional

3.2.3 CUDA threads and execution configuration <<< >>>

The CUDA hardware architecture is built around a scalable array of multi-threaded Stream-

ing Multiprocessors (SMs), designed to execute hundreds of threads concurrently. To

manage such a large amount of threads, NVIDIA designed a unique architecture called

SIMT (Single-Instruction, Multiple-Thread), not included in Flynn’s taxonomy for com-

puter architecture (Section 1.3.1). It leverages thread-level parallelism by using hardware

multi-threading. The SIMT architecture is akin to SIMD computer architecture. The

main difference is that SIMD vector organizations expose the SIMD width to the software,

whereas SIMT instructions specify the execution and branching behavior of a single thread.

When a CUDA program on the host invokes a kernel function

kernel func <<< Dg,Db >>> (parameter), it is launched as a grid of independent,

scalar threads. Grid is a two level hierarchy of threads. At first level there are 1D or 2D

thread blocks, and at the second level, each block is a 1D, 2D or 3D group of threads.

These levels exist so that threads can distinguish themselves and to maximize hardware

performance. Blocks of the grid are enumerated and distributed concurrently to multi-

Miro Jurǐsić – Simulation Ising spin using CUDA 22

processors with available execution capacity. As thread running blocks terminate, waiting

blocks are launched on the vacated multiprocessors. The threads of a thread block are

also enumerated and executed in groups of 32 parallel threads called warps. Enumeration

of threads at both levels is done by built-in struct variables threadIDx and blockIDx,

called thread ID. At the call of a kernel, programmer must explicitly describe hierarchy of

threads, meaning that programmers need to specify dimensionality and size of particular

dimensions for each level of a grid. This is called execution configuration,

<<< Dg,Db >>>, where Dg and Db are built-in variable type dim3 with Dg representing

dimensions of a grid at first level, number of blocks, and Db represents dimensions of each

block. Dg and Db have restriction on size, while there is a maximum number of resident

blocks and a maximum number of resident warps per multiprocessor for a given kernel that

depends on the amount of registers and shared memory used by the kernel and the amount

of registers and shared memory available on the multiprocessor. To assist programmers in

choosing thread block size based on register and shared memory requirements, the CUDA

SDK (Software Development Kit) provides a spreadsheet called the CUDA Occupancy

Calculator, where occupancy is defined as the ratio of the number of resident warps to the

maximum number of resident warps for various graphics cards.

3.2.4 Barrier synchronization and atomic functions

Threads in a block can specify barrier synchronization points. void syncthreads() is a

function that synchronizes all threads in a block, execution resumes normally only when

all threads in a block have reached this point. It is important to notice that synchro-

nization function does not work between threads from different blocks. Synchronization

is usually used to avoid read-after-write, write-after-read, or write-after-write hazards, so

synchronization points stand in-between accessing memory. Even though synchronization

is a very useful tool, it can however lead to slow down of execution time or produce some

other unwanted effects if some threads in a block evaluate branch conditions differently.

An atomic function performs a read-modify-write operation on data in global or shared

memory and it guarantees performance without interference from other threads. It means

that no other threads can access the same address until operation is complete. In other

words each read, modify, write to that location are serialized, but the order in which they

occur is undefined. There are several atomic functions. For example,

Miro Jurǐsić – Simulation Ising spin using CUDA 23

Figure 11: Schematic representation of hybrid cluster at University of Split, Faculty of
Natural sciences and Mathematics [13]

int atomicAdd(int ∗ address, int val) used in our simulation. It reads a value from

address, locks that address, adds value val to the value in address and stores the result

back to the same address in memory after which this address becomes available to other

threads.

3.3 HYBRID cluster

For the purpose of this thesis, HYBRID cluster has been used. The cluster is managed by

the Department of Physics, University of Split, Croatia[13]. HYBRID is an experimental

cluster that explores High Performance Computing technology. The project consists of

an interdisciplinary consortium that uses the cluster for science research, assess the ap-

plicability of GPGPU techniques for scientific applications, provide feedback on practical

problems with the cluster utilization and demonstrate the overall proof of concept needed

for further investment into the technology. HYBRID cluster combines two quad-core pro-

cessors and NVIDIA TESLA 10 series GPUs as showed in figure 11. The NVIDIA Tesla

S1070 Computing System is a 1U rack-mount system with four Tesla T10 computing pro-

cessors[14]. This system connects to one or two host systems via one or two PCI Express

cables. A Host Interface Card (HIC) is used to connect each PCI Express cable to a host.

The host interface cards are compatible with both PCI Express 1x and PCI Express 2x

systems figure 12.

Miro Jurǐsić – Simulation Ising spin using CUDA 24

(a) Tesla S1070 System Architecture, schematic view

(b) Tesla S1070

Figure 12: Tesla S1070 System Architecture

Miro Jurǐsić – Simulation Ising spin using CUDA 25

3.4 Parallel Metropolis algorithm using CUDA

Looking at acceptance rule for metropolis algorithm in equation 28, updating decision for

spin si depends only on its four (in 2D) neighbors while energy contribution of a spin

depends only on the nearest neighbors. It allows calculations to be made local and highly

parallel by using lattice decompositions of the checkerboard type, figure 13. Algorithm 1

needs to be modified in such a way that spins are not chosen at random for changing their

orientation, but to alter them in a predefined order and to update a large set of spins at

the same time. The authors of Ref. [15] worked on strips or columns of the lattice for spin

update, similar to a checkerboard decomposition, but referenced setup does not take the

hierarchical memory organization into account, so their spin field resides in global memory

at all time. The authors of Ref.[16] have done the same lattice decomposition that is used

in this thesis with difference in memory mapping and threads execution. This thesis shows

trend in HPC, where one has a sequential program, usually thousand of lines of code, that

at first needs to be analyzed by looking for a data parallelism parts and then these parts

have to be rewritten in parallel.

3.4.1 Single checkboard decomposition

Single checkboard decomposition algorithm,(described in table sAlgorithm 2) is summa-

rized in Figure 13. The hole grid of spins from global memory are first decomposed in to

blocks and mapped to shared memory of each block. Also boundary spins from neighboring

block are copied to particular block. Then spin flip condition is posed on, at first even

that at odd spins to avoid memory access interference. After this step, after all spin sites

are tested for spin flip, values of spins are returned to global memory. This algorithm uses

values of spins in shared memory only once while it has to return values to global memory

because boundary values of each block belong to neighboring block and they need to be

updated. This algorithm updates half of spins at once, while others half are neighboring

spins that are used to calculate energy.

Miro Jurǐsić – Simulation Ising spin using CUDA 26

Figure 13: Checkboard decomposition, energy contribution of a single spin depends only
on the nearest neighbors, so when uploading ”red” spins we can have ”blue” spins in shared
memory while they do not change and vice versa.

3.4.2 Double checkboard decomposition

The second algorithm, Algorithm 3 and figure 14, so called double checkboard decompo-

sition algorithm, uploads half of blocks, even or odd, to shared memory and by doing that

it can use values of spins stored in shared memory many times while value of boundary

spins of a block do not change because they belong to neighboring block that is not set for

execution. Inside particular block execution is same as in single checkboard decomposition.

Since much time is consumed for data transfer between global and shared memory, and

since access to shared memory is faster than access to global memory, by using shared

memory more times in between transferring data, double checkboard decomposition is

expected to be faster than single checkboard decomposition even though this algorithm

updates only quarter of all soins at once.

Miro Jurǐsić – Simulation Ising spin using CUDA 27

Algorithm 2 Single checkboard parallel Metropolis algorithm

shared memory ⇐ global memory
if threadID == even then

Metropolis update of each thread with appropriate ID
synchronization point

else
Metropolis update of each thread with appropriate ID
synchronization point

end if
global memory ⇐ shared memory

Algorithm 3 Double checkboard parallel Metropolis algorithm

shared memory ⇐ global memory
if blockID == even then

for i = 1→ LOCALFLIP do
if threadID == even then

Metropolis update of each thread with appropriate ID
synchronization point

else
Metropolis update of each thread with appropriate ID
synchronization point

end if
end for
global memory ⇐ shared memory
shared memory ⇐ global memory

else
for i = 1→ LOCALFLIP do

if thredID == even then
Metropolis update of each thread with appropriate ID
synchronization point

else
Metropolis update of each thread with appropriate ID
synchronization point

end if
end for

end if
global memory ⇐ shared memory

Miro Jurǐsić – Simulation Ising spin using CUDA 28

(a) The first step - odd block

(b) The second step - even block

Figure 14: Double checkboard decomposition

Miro Jurǐsić – Simulation Ising spin using CUDA 29

Figure 15: Energy per spin for deferent lattice sizes. Lattice size is block size ∗ grid size
and block size is in all cases 16.

4 Results

4.1 Physical properties of Ising Spin model

Figures 15-19 show results for the significant data of an Ising model. Figure 15 shows

energy per spin in a temperature range, where Ising 2D model exhibits phase transition.

Results show that at low temperatures, lower that transition temperature, energy per spin

is minimum and it gets closer to zero above transition temperature. Figure 16 shows

specific heat that is connected to energy fluctuation(7), at same temperature range. At

temperature of phase transition fluctuations of energy are high as shown by large values

of specific heat. It is also important to notice that results show that specific heat is highly

dependent on lattice size as mentioned in introduction. Figure 17 shows magnetization

per spin which also show phase transition in the same temperature range. At temperatures

below transition temperature magnetization per spin is 1, meaning that all spins are align.

Miro Jurǐsić – Simulation Ising spin using CUDA 30

Figure 16: Specific heat per spin for different lattice sizes. Lattice size is block size ∗
grid size and block size is in all cases 16.

Miro Jurǐsić – Simulation Ising spin using CUDA 31

Figure 17: Magnetization per spin for deferent lattice sizes. Lattice size is block size ∗
grid size and block size is in all cases 16.

Above transition temperature magnetization per spin drops to zero, which is typical for

random orientation of spins. Figure 18 shows magnetic susceptibility that is connected to

magnetization fluctuations(10). Similar to specific heat, magnetic susceptibility is high at

transition temperature due to high fluctuations in magnetization. For larger lattice sizes,

fluctuations are large. The same holds for values of specific heat. Figure 19 shows absolute

value of magnetization per spin and it shows results similar to figure 17, but with the

deference of not having negative values for magnetization.

Miro Jurǐsić – Simulation Ising spin using CUDA 32

Figure 18: Magnetic susceptibility per spin for deferent lattice sizes. Lattice size is
block size ∗ grid size and block size is in all cases 16.

Miro Jurǐsić – Simulation Ising spin using CUDA 33

Figure 19: Absolute magnetization per spin for deferent lattice sizes. Lattice size is
block size ∗ grid size and block size is in all cases 16.

Miro Jurǐsić – Simulation Ising spin using CUDA 34

 0.1

 1

 10

 100

 1000

 0 50 100 150 200 250 300 350 400 450 500 550

T
[m

s]

lattice size

CPU time
GPU-single checkboard

GPU-double checkboard

Figure 20: Execution time for CPU and for two GPU codes (block size is 16).

4.2 Advantages of GPU over CPU

Figure 20 is the most important graph for this thesis. It shows execution times for three

different programs. Comparison is made between the CPU code and two different GPU

codes. CPU execution time is much longer than that of GPU and difference rises with size

of the lattice. Figure 21 shows the same data as figure 20, but this time GPU execution

time is divided by CPU execution time to get speedup. One of the specific properties

of GPU cards is existence of “magic” numbers. For some specific size of grid and block

size, performance changes suddenly. The same is shown in Figure 21. As noted in gugure

captions, block size is always 16, but grid size changes from 1 to 32. At grid size 16, same

as block size, performance drops and thet it rises again.

Miro Jurǐsić – Simulation Ising spin using CUDA 35

Figure 21: Speedup of GPU codes (block size is 16).

Miro Jurǐsić – Simulation Ising spin using CUDA 36

5 Discussion and conclusion

GPU outperforms CPU in simulation of Ising model by factor of about 50 to 200, depending

on the lattice size. For larger lattice sizes(more than about 50x50) performance difference

grows in favor of GPU. It is in agreement with previous work but it is also a future trend

that will use graphic cards for general computation rather than just for graphics. One could

easily transform program written for this thesis to perform simulation in other problem

where interaction is bounded to nearest neighbors only. Or one could continue to work on

the same program by optimizing it even more. For instance, on-chip texture memory has

not been used in our cases. More sophisticated mapping of memory from global to shared

could be implemented. Another significant conclusion of our work is that we have to become

familiar with the structure of CUDA programming architecture. It is minimal extension to

standard high level programs like C. Time spent on getting familiar with CUDA eviroment

pays back while there is a huge speedup in execution time. It would be interesting to test

this program on newer generations of NVIDIA graphics cards, Fermi architecture cards.

CUDA architecture is only usable on NVIDIA graphics cards, while another programming

model called Open CL is being developed, and it also works on heterogeneous computer

architectures, but it is used across different manufactures of graphic cards.

Miro Jurǐsić – Simulation Ising spin using CUDA 37

A CUDA code - kernel function

g l o b a l void dev i c eMet ropo l i s (int ∗ sp ins , int ∗EMD, f loat
temp GPU , int ∗ranD)

{
s h a r e d int b l o c k s p i n [b l o c k s i z e +2] [b l o c k s i z e +2] ;
s h a r e d int E[b l o c k s i z e] [b l o c k s i z e] ;

int i t = threadIdx . x ; // dimenz i ja unutar b l o k a
int kt = threadIdx . y ;
int i = b l o c k s i z e ∗ blockIdx . x + i t ;
int k = b l o c k s i z e ∗ blockIdx . y + kt ;
int Ni = b l o c k s i z e ∗ g r i d s i z e ;
int Nk = b l o c k s i z e ∗ g r i d s i z e ;
int i k = Ni∗k + i ;

f loat temp = temp GPU ;
unsigned int ran=ranD [ik] ;

s ync th r ead s () ;
b l o c k s p i n [i t +1] [kt+1]= sp in s [i k] ;
i f (i ==0) b l o c k s p i n [i t] [kt+1]= sp in s [i k +(Ni−1)] ;
else i f (i t ==0) b l o c k s p i n [i t] [kt+1]= sp in s [ik −1] ;
i f (i==Ni−1) b l o c k s p i n [i t +2] [kt+1]= sp in s [ik−(Ni−1)] ;
else i f (i t==b l o c k s i z e −1) b l o c k s p i n [i t +2] [kt+1]= sp in s [i k +1] ;
i f (k==0) b l o c k s p i n [i t +1] [kt]= sp in s [i k +(Nk−1)∗Ni] ;
else i f (kt==0) b l o c k s p i n [i t +1] [kt]= sp in s [ik−Ni] ;
i f (k==Nk−1) b l o c k s p i n [i t +1] [kt+2]= sp in s [ik−(Nk−1)∗Ni] ;
else i f (kt==b l o c k s i z e −1) b l o c k s p i n [i t +1] [kt+2]= sp in s [i k+Ni

] ;
f loat dE ;
sync th r ead s () ;

i f ((i t+kt+2)\%2==0)
{ E[i t] [kt]=−1∗b l o c k s p i n [i t +1] [kt +1]∗

(b l o c k s p i n [i t] [kt+1]+ b l o c k s p i n [i t
+2] [kt+1]+

b l o c k s p i n [i t +1] [kt]+ b l o c k s p i n [i t
+1] [kt +2]) ;

dE=−2.∗(f loat)E[i t] [kt] ;
s ync th r ead s () ;
i f (MULT∗ (∗ (unsigned int ∗)(&RAN(ran)))<= e x p f ((−

dE) /temp))
{

b l o c k s p i n [i t +1] [kt+1]∗=−1;
E[i t] [kt]∗=−1;
}

Miro Jurǐsić – Simulation Ising spin using CUDA 38

}
sync th r ead s () ;

i f ((i t+kt+2)\%2!=0)
{ E[i t] [kt]=−1∗b l o c k s p i n [i t +1] [kt +1]∗

(b l o c k s p i n [i t] [kt+1]+ b l o c k s p i n [i t
+2] [kt+1]+

b l o c k s p i n [i t +1] [kt]+ b l o c k s p i n [i t
+1] [kt +2]) ;

dE=−2.∗(f loat)E[i t] [kt] ;
s ync th r ead s () ;

i f (MULT∗ (∗ (unsigned int ∗)(&RAN(ran)))<= e x p f ((−
dE) /temp))

{
b l o c k s p i n [i t +1] [kt+1]∗=−1;
E[i t] [kt]∗=−1;
}

}
sp in s [i k]= b l o c k s p i n [i t +1] [kt +1] ;

ranD [ik]=ran ;

sync th r ead s () ;
int nTotalThreads = b l o c k s i z e ;

while (nTotalThreads > 1)
{

int ha l fPo in t = (nTotalThreads >> 1) ;
i f (kt < ha l fPo in t)
{
b l o c k s p i n [i t +1] [kt+1]+=b l o c k s p i n [i t +1] [kt+

ha l fPo in t +1] ;
E [i t] [kt] += E[i t] [kt+ha l fPo in t] ;
}

sync th r ead s () ;
nTotalThreads = (nTotalThreads >> 1) ;

}
sync th r ead s () ;

int mTotalThreads = b l o c k s i z e ;
while (mTotalThreads > 1)
{

int h a l f = (mTotalThreads >> 1) ;
i f ((i t < h a l f)&&(kt==0))
{
b l o c k s p i n [i t +1][1]+= b l o c k s p i n [i t+h a l f + 1] [1] ;
E [i t] [0] += E[i t + h a l f] [0] ;
}

sync th r ead s () ;

Miro Jurǐsić – Simulation Ising spin using CUDA 39

mTotalThreads = (mTotalThreads >> 1) ;
}

sync th r ead s () ;
i f ((i t ==0) & (kt==0)){
atomicAdd (&EMD[0] ,E [i t] [kt]) ;

atomicAdd(&EMD[1] , b l o c k s p i n [i t +1] [kt +1]) ;
}

sync th r ead s () ;
}

Miro Jurǐsić – Simulation Ising spin using CUDA 40

References

[1] E.Ising, Beitrag zur Theorie des Ferro- und Paramagnetismus (Thesis, Hamburg)

(1924).

[2] C. Stutz, B. Williams, Physics Today 52, 106 (1999).

[3] L. Osnager, Phys. Rev.,65, 117 (1944).

[4] A. E. Ferdinand, M. E. Fisher, Bounded and inhomogeneous Ising models. I. Specific

heat anomaly of a finite lattice, Phys. Rev. 185 832 (1969).

[5] Supercomputing, Portland, OR, Nov., 2009.

[6] M. J. Flynn, Some computer organizations and their effectiveness IEEE TRANSAC-

TIONS ON COMPUTERS, 9, c-21 Sep. (1972)

[7] Lawrence Livermore National Laboratory web page:

https://computing.llnl.gov/tutorials/parallel_comp/

[8] TOP500 project: http://www.top500.org

[9] High performance Linpack Benchmark: http://www.netlib.org/benchmark/hpl/

[10] M. Hjorth-Jensen, Computational Physics, University of Oslo, (2007).

[11] David B. Kirk, Wen-mei W. Hwu, Programming Massively Parallel Processors, Mor-

gan Kaufmann Publishers, (2010).

[12] NVIDIA, NVIDIA CUDA C Programming Guide, (Version 3.2).

[13] Department of Physics, University of Split, Croatia, cluster homepage:

http://www.gpuhybrid.org/

[14] NVIDIA, Tesla S1070 GPU Computing System , (SP-04154-001 v02), (2008).

[15] T. Preis, P. Virnau, W. Paul, J. J. Schneider, GPU accelerated Monte Carlo simula-

tion of the 2D and 3D Ising model, J. Comput. Phys. 228 4468, (2009).

[16] M. Weigel, Simulating spin models on GPU, arXiv:1006.3865v1

[17] M. Hjorth-Jensen homepage: http://folk.uio.no/mhjensen/

