
Gravitational potential modelling using a
graphic processing unit with CUDA

Ante Miočić

Supervisor: dr.sc. Dejan Vinković

Split, September 2011

Bachelor Thesis in Physics

Department of Physics
Faculty of Natural Sciences and Mathematics

University of Split



Abstract

In this work we have implemented numerical calculation of gravitational potential on Graphical
processing units (GPUs) using CUDA programing environment. GPUs execute algorithms based on
massive parallelization that may result in significant computational speed ups. We tested precision of
our algorithm using two examples of spherical density distributions with known analytical solutions.
Speed ups achieved with GPUs compared to CPUs on these two examples was between 50 and 100
times. We also explored an extreme example of density distribution where mass exists in all cells within
the computational domain. In this case a speed up of more than 100 was achieved. We conclude that
GPUs are a desirable computational environment for numerical calculation of gravitational potential.



Contents

1 Background 1
1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 CUDA-Compute unified device architecture . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Gravitational potential of spherical bodies . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Methods 8
2.1 Analytical solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2 Numerical solution and time measurement . . . . . . . . . . . . . . . . . . . . . . . . 10

3 Results 14
3.1 Problem 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.2 Problem 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.3 Problem 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

4 Discussion 19

5 Conclusions and recommendations 20
5.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
5.2 Recommendations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

A CPU code 21

B GPU code 23

II



List of Tables

3.1 CPU device properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.2 GPU device properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

III



List of Figures

1.1 Floating point operations per second [1] . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Memory bandwith for CPU and GPU [1] . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 CPU is rich with control flow (Control) and data caching (Cache) elements because

these functions are important for running operating systems. Data processing elements
(ALU) dominate GPU because they enable executing large number of instructions [1] . 3

1.4 Memory hierarchy [8]— Arrows represent different memory access directions for threads
execution on a GPU. For details of different type of memories see their description in
Section 1.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.5 Code execution process [1]. Serial code is executed on CPU host thread (single black ar-
row) until it reaches kernel. After invoking kernel grid is created and kernel is executed
in parallel fashion on GPU. However host thread simultaneously proceeds executing
remaining CPU code until it reaches another kernel when a new grid is created . . . . . 5

1.6 Sphere having radial density function . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.7 Contributions of thin shells to total potential . . . . . . . . . . . . . . . . . . . . . . . 7

3.1 Analytical solution and deviation from analytical solution for ρ = 1. Analytical and
numerical solution displayed on top part of the figure match each other . . . . . . . . . 15

3.2 Execution time dependence on number of steps N for ρ = 1 . . . . . . . . . . . . . . . 15
3.3 Analytical solution and deviation from analytical solution for ρ = r2. Analytical and

numerical solution displayed on top part of the figure match each other . . . . . . . . . 16
3.4 Execution time dependence on number of steps N for ρ = r2 . . . . . . . . . . . . . . 16
3.5 Numerical solution for ρ = e−r

2
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.6 Execution time dependence on number of steps N for ρ = e−r
2
. GPU represents exe-

cution time dependence obtained calculating density on CPU, while GPU+ represents
execution time dependence obtained calculating density on GPU . . . . . . . . . . . . 18

IV



Chapter 1

Background

1.1 Introduction

As technology advances so do our desires and needs to do something faster, efficient and more accu-
rate. Many physical phenomena are nowadays simulated on a computer and for complex phenomena
demanding large scale calculations we are forced to expand our techniques to satisfy these demands.
Luckily we also have support form hardware manufacturers who build ever more powerful devices to
serve our demands. NVIDIA has recently introduced CUDA environment that along with its powerful
devices also brings new programming model to use all potential of NVIDIA graphical processing units
(GPUs)

Figure 1.1: Floating point operations per second [1]

Figure 1.1 shows dramatic increase in performance of GPUs with time especially those performing
single precision calculations. Since GPU architecture allows massive parallelism we can use environ-
ments like CUDA to solve our problems with much greater speed. To test speed up of CUDA we used

1



Figure 1.2: Memory bandwith for CPU and GPU [1]

gravitational potential in space as a model. By numerically calculating potential both on CPU and GPU
and measuring run time for each architecture we determined speedup of performing calculations with
CUDA. CUDA model can be applied to various problems in scientific numerics ranging from electro-
statics and gravity all the way to black hole simulations (for more informations see [2]). For all those
eager to learn more about CUDA syntax see [3].

1.2 CUDA-Compute unified device architecture

CUDA enables programmers to develop software that uses parallel possibilities of GPU. It unifies soft-
ware environment which enables us to communicate directly with hardware and NVIDIA architecture
which enables us to perform instructions simultaneously on a great number of threads.

GPU has potential to perform great number of simultaneous calculations mainly because of its
design. GPU processors design dictates that majority of transistors should be rich with data processing
elements as opposed to the CPU where large share of transistors consists of data caching and control
flow elements (Figure 1.3). That enables software developers to run highly parallel computations on
great number of data.[4]

NVIDIA’s GPU processors which support CUDA model consist of Streaming Multiprocessors (ab-
breviated SMs). Number of multiprocessors varies form 1 to 130, average value being 30[4]. Once a
grid is launched blocks of threads are arbitrarily assigned to multiprocessors. Blocks execute indepen-
dently from one another and after executing one block SM automatically proceeds executing another
block assigned to it. Further GPU employs Single Instruction Multiple Threads Architecture. SIMTs
divide each block into a groups of 32 threads called warps[4]. Warps all execute identical instructions
thereby speeding up the execution if threads in a warp are non divergent. If there is a need to synchro-
nize threads in a block we can use syncthreads() which will force all threads in a block to execute
given commands and finalize reading and writing from shared memory.

2



Figure 1.3: CPU is rich with control flow (Control) and data caching (Cache) elements because these
functions are important for running operating systems. Data processing elements (ALU) dominate GPU
because they enable executing large number of instructions [1]

CUDA C is basically an extension of C and introduces kernel functions in C. Kernel functions can
be viewed as a set of instructions executed in parallel on all threads in a grid. Kernel functions have
some limitations. They:

• are not recursive;

• do not return value (i.e. type void);

• cannot call higher-order functions.

Kernel functions have prefixes:

• host function called on CPU and executed on CPU ;

• device function called on GPU and executed on GPU;

• global function called on CPU and executed on GPU.

We are mostly interested in global kernel function normally referred to simply as kernel. To completely
define kernel beside providing with prefix global we also have to provide<<<. . . >>> execution
configuration. General form of kernel function looks like

1 __global__ void kernel<<<dimGrid, dimBlock>>>();

Variables dimGrid and dimBlock are dim3 type variables and define number of blocks per grid and
number of threads per block. Launching kernel creates an abstract 2D grid of 3D blocks. Maximum
number of blocks dimGrid.x * dimGrid.y was for our specific GPU device 65535. Maximum number
of threads dimBlock.x * dimBlock.y* dimBlock.z must not exceed 512. To determine coordinate of
every thread in a block we use struct variable threadIdx. We can refer to threadIdx only inside kernel
function.

Different memory spaces provide different access to threads, blocks and grid. Execution perfor-
mance depends on what type of memory space is being used to write or read values

3



Figure 1.4: Memory hierarchy [8]— Arrows represent different memory access directions for threads
execution on a GPU. For details of different type of memories see their description in Section 1.2

As illustrated by Figure 1.4 there are several types of memory spaces:

Registers Accessible to individual threads. Fastest memory space on GPU

Shared memory Accessible to all threads from a single block. If no diverging as fast as registers,
supports reading and writing of data

Constant memory Accessible to all threads in grid but only supports reading. CPU only has the option
of writing data

Texture memory Same features as constant but additionally provides data filtering

Global memory Accessible to all threads in a grid but up to 150 times slower than shared memory

Local memory Used to store data of individual threads but resides in global memory and hence much
slower than registers

Programs written with CUDA C are compiled with nvcc compiler provided by NVIDIA. While
compiling our code with nvcc CPU code is compiled independently from GPU code. Same applies
to execution. Host CPU thread starts executing CPU code until it reaches kernel. Kernel creates grid
and starts executing parallel instructions on GPU. CPU continues executing serial code until it reaches
another kernel and creates new grid as shown in Figure 1.5. Therefore it is of great essence that before

4



kernel is launched other kernels have finished executing on GPU. If there are several GPU capable
devices on system then CPU has to run several host threads to access each device

Figure 1.5: Code execution process [1]. Serial code is executed on CPU host thread (single black arrow)
until it reaches kernel. After invoking kernel grid is created and kernel is executed in parallel fashion
on GPU. However host thread simultaneously proceeds executing remaining CPU code until it reaches
another kernel when a new grid is created

5



1.3 Gravitational potential of spherical bodies

In this work we are interested in the problem of gravitational potential. However before embarking
on various large-scale problems, we decided to initially focus our work on gravitational potential of
spherical bodies where we can obtain analytic results to debug and test precision of our algorithms. Let
us observe gravitational potential of spherical bodies having radial function of density. Such bodies
have density function ρ = ρ(r).

Figure 1.6: Sphere having radial density function

We are interested to determine what is the value of gravitational potential at points inside the sphere
(like P’) and at points outside the sphere (like P). Using Gauss theorem [5] for gravitational field∫����∫

S
~g d~s = −4πGM

where S is closed surface, ~g gravitational field and M mass of the body enclosed by the surface S, we
easily determine that gravitational field vector for any point P outside the sphere is given by

~g = −GMtotal

r2
r̂

Mtotal being mass of the sphere having radius R and r̂ unit vector pointing radially outward from the
center of sphere. Gravitational potential is integral of gravitational field and is given by

V = −GMtotal

r
, r > R (1.1)

If we are interested in points P’ inside the sphere we note that potential is sum 1.2 (Figure 1.7)
V1 represents contribution of points (r < x < R), where we have used x to represent distance from

the center of the sphere, to potential at point P’. V2 represents contribution to the potential of sphere
having radius r. Total potential at point P’ is obviously

V = V1 + V2 (1.2)

V2 is easy to obtain because it’s potential of the sphere having radius r calculated on it’s surface. We
have already solved that example using Gauss law and know that solution is V2 = −GM

r , where M is
total mass of the sphere having radius r. To calculate V1 we note that we can represent our hollow sphere
as an infinite number of spherical shells having radius x and thickness dx. Gravitational potential for a
point inside single spherical shell having radius x is given by

dV1 = −Gdm
x

= −4πGρxdx (1.3)

6



Figure 1.7: Contributions of thin shells to total potential

In order to calculate V1 we just integrate (1.3) and take limits x1=r and x2=R.
If we are dealing with non spherical bodies or bodies having density function ρ 6= ρ(r) easiest

way of calculating potential is going straight to calculating numerical solution because normalized
gravitational potential is defined as [6]

φ(~x) = −
∫

Ω

1

|~x− ~r|
ρ(~r)d3r (1.4)

where Ω is integration domain. This integral can be very complex if density is not spherically symmetric
or if integration domain Ω is not spherical and therefore we have to calculate it numerically.

7



Chapter 2

Methods

Our task was to calculate potential and determine execution time on CPU and GPU depending on
solution domain. We were interested to determine actual speed up given by the following formula [7]

S =
Ts
Tp

(2.1)

where Ts is execution time of sequential algorithm and Tp is execution time of parallel algorithm. To
determine quality of our solutions we compared them to analytical solutions whenever possible. We
observed three different examples involving spherically symmetric densities:

1. ρ(r) = 1 density of a sphere having radius R=10;

2. ρ(r) = r2 density of a sphere having radius R=10;

3. ρ(r) = e−r
2

density throughout space.

Sphere was placed in center of box having linear dimensions equal to N. After finding analytical solu-
tions for densities listed above we calculated numerical solution on CPU and GPU respectively, mea-
suring execution time in process. Comparing analytical and numerical solutions we determined their
quality and error in calculating numerical solution to analytical solution. After obtaining execution
times for GPU and CPU we could determine speedup S.

2.1 Analytical solution

To determine analytical solution we refer to equations 1.1 and 1.2 Normalized potential function of
gravitational potential is φ = V

G .
As our first example we start with density function ρ = 1 . Employing our reasoning above we

know that for a sphere of radius R=10 and given density function, analytical solution is of the form

φ =

( 2
3r

2π − 2πR2 r < R

−4πR3

3r r > R

)
(2.2)

Derivation
Mass of sphere having radius r and constant density ρ = 1

M =

∫
ρd3r = 4π

∫ r

0
r′2 dr′ =

4

3
πr3

8



Potential outside sphere:

Mtotal =
4

3
πR3

φ = −Mtotal

r

φ = −4πR3

3r

Potential inside sphere:

φ = φ1(x = r) + φ2(r < x < R)

φ1 = −M
r

M =
4

3
πr3

φ1 = −4πr2

3

φ2 = −4π

∫ R

r
x dx = 2πr2 − 2πR2

φ = φ1 + φ2 =
2

3
r2π − 2πR2

As our second example we take density function to be of the form ρ = r2 . Analytical solution for
sphere of radius R will again be of the form

φ =

( 1
5πr

4 −R4π r < R

−4πR5

5r r > R

)
(2.3)

Derivation
M =

∫
ρd3r = 4π

∫ r

0
r′4 dr′ =

4

5
πr5

Outside the sphere:

Mtotal =
4

5
πR5

φ = −Mtotal

r

φ = −4πR5

5r

Inside:

φ = φ1(x = r) + φ2(r < x < R)

φ1 = −M
r

M =
4

5
πr5

φ1 = −4πr4

5

9



φ2 = −4π

∫ R

r
x3 dx = r4π −R4π

φ = φ1 + φ2 =
1

5
πr4 −R4π

Our third example is ρ(r) = e−r
2
. This time we expand density domain for all points in rectangular

box. Because our domain of integration is no longer of spherical shape we can not analytically solve
integral 1.4 and have to proceed straight to numerical calculation.

2.2 Numerical solution and time measurement

To calculate numerical solutions I have written three independent programs:

• CPUpotential.cpp1 CPU host code without parallelization;

• GPUpotential.cu2 CUDA C code where potential is calculated on GPU;

• GPU+potential.cu3 CUDA C code where both density and potential are calculated on GPU.

To numerically calculate integral 1.4 we first have to replace integral by discrete sum

φ(i, j, k) = −
∑
i′,j′,k′

ρ(i′, j′, k′)√
(i− i′)2 + (j − j′)2 + (k − k′)2

∆V (2.4)

Since we are calculating normalized potential we can put ∆V = 1 in 2.4. We can immediately deduce
that to calculate potential for all points in space we have to include at least six for loops because we
have 3 summation indices to calculate density at every point plus another 3 to calculate potential at
every point. Our source code to calculate potential on CPU will therefore have the following outlook in
C++ code

1 float Potential[N][N][N]; // potential
2 int I0 = (int)((float)N/2.0); // computational cube center
3 // loop over points in space to calculate Mass
4 for(i=-I0; i<=I0; i++) {
5 for(j=-J0; j<=J0; j++) {
6 for(k=-K0; k<=K0; k++) {
7
8 // mass at point (i,j,k)
9 MassCell = Density(i,j,k);

10 Mass += MassCell;
11
12 if (MassCell > 0.0) // continute only if this cell has some mass
13 // loop over points in space to calculate Potential
14 for(I=-I0; I<=I0; I++) {
15 Itemp = (I-i)*(I-i);
16 for(J=-J0; J<=J0; J++) {
17 Jtemp= (J-j)*(J-j);
18 for(K=-K0; K<=K0; K++) if (I!=i || J!=j || K!=k) {
19 Ktemp = (K-k)*(K-k);

1Check appendix A for complete code
2Check appendix B for complete code
3Check appendix B for complete code

10



20 // add contribution to the potential at (I,J,K)
21 Potential[I+I0][J+J0][K+K0] -= (MassCell/sqrt(Itemp+Jtemp+Ktemp));
22 } } } // end of loop over points in space to calculate Potential
23
24 } } } // end of loop over points in space to calculate Mass

We notice that all the values are written in 3D array Potential[][][]. First three loops are loops over
space. We examine every point to find its contribution to potential at other points. We can exclude
points where density is ρ = 0 i.e. empty space because they do not contribute to potential. If ρ 6= 0 we
then proceed to add contribution of that specific mass to all other points in space.

Intuitively we can guess that we can greatly speed up the execution if we calculate in parallel
contribution of mass to other points. To do this we employ kernel function that will be executed on
GPU when called.

1 //kernel function
2 __global__ void racunaj(float *d_potential, int N, unsigned int Ntot,
3 int l, int m, int n, float Mass)
4 {
5 //thread global coordinate
6 unsigned int tidx = blockIdx.x * blockDim.x + threadIdx.x;
7 int I0=(int)((float)N/2.); // center of sphere
8
9 // potential at (i,j,k)

10 float temp_potential = 0.0;
11
12 if (tidx<Ntot){
13
14 //calculate coordinates (i, j, k) of this thread
15 int i = tidx%N;
16 int j = ((tidx-i)/N)%N;
17 int k = (((tidx-i)/N)-j)/N;
18
19 // shift to the ceter
20 i -= I0; j -= I0; k -= I0;
21
22 if (i!=l || j!=m || k!=n) {
23 // contribution to the potential at (i,j,k) from (l,m,n)
24 temp_potential= d_potential[tidx]; // old value
25 temp_potential -= Mass / sqrtf((i-l)*(i-l) + (j-m)*(j-m) +
26 (k-n)*(k-n));
27 d_potential[tidx]=temp_potential; // new value
28 }
29 }
30
31 } // end of: __global__ void racunaj

Doing this we have essentially transferred calculations of point contribution to device where they are
being executed in parallel therefore effectively we have reduced our total of 6 for loops to 3. One
of many new features is introduction of thread coordinate. Although we have a 3D problem for opti-
mization reasons (memory access on GPU) we calculate it using 1D grid of blocks all having just one
dimension by introducing global index tidx. Tidx has range [0 : N3−1] and can be used to index values
of d potential, an array to which we store values of potential calculated on device. d potential holds

11



addresses to memory space allocated on global memory of GPU. After executing kernel for a single
point we do the same for all points in space. First we set potential to zero for every point in space and
copy that to GPU array d potential. If domain of our density function is a sphere we calculate density
of each point on CPU because of small amount of data to be processed. After calculating mass of each
point we forward that information as an argument to our kernel function which then executes series of
parallel instructions on GPU.

1 for(i=-I0; i<=I0; i++) {
2 for(j=-I0; j<=I0; j++) {
3 for(k=-I0; k<=I0; k++) {
4
5 // mass at point (i,j,k)
6 MassCell = Density(i,j,k);
7
8 if (MassCell > 0.0) // continute only if this cell has some mass
9 // run krenel

10 racunaj<<< nBlocks, nThreads >>>(d_potential, N, Ntot, i,j,
11 k, MassCell);
12
13 } } } // end of loop over points in space to calculate Mass
14 ///////////////////////////////
15 // copy device array d_potential to host array h_potential
16 cudaMemcpy(h_potential, d_potential, size, cudaMemcpyDeviceToHost);

After looping through all space we copy data stored in device array to host array. If domain for our
density function is all space then it would be optimal solution to calculate mass of all points on GPU
and store them back to CPU array because for complex mass distributions calculating mass individually
for each particle tends to be more time exhausting. Way to do this is shown in GPU+.cu. To measure
time of execution one simply has to insert code in between following instructions

1 static long myclock()
2 {
3 struct timeval tv;
4 gettimeofday(&tv, NULL);
5 return (tv.tv_sec * 1000000) + tv.tv_usec;
6 }
7 // initial final time difference function
8 double getRuntime(long* end, long* start)
9 {

10 return (*end - *start);
11 }
12
13 int main(){
14 .
15 .
16 .
17 // capture initial time
18 long start = myclock();
19
20 //.......CODE TO BE EXECUTED............
21
22 //capture final time

12



23 long end = myclock();
24 // display execution time
25 std::cout << "" << std::setprecision(3)
26 << getRuntime(&end, &start)/1000000.0 << "" << std::endl;
27 .
28 .
29 return 0;
30 }

13



Chapter 3

Results

We observed three distinct problems involving three different density functions listed on page 8 in
their respectful domains. To determine quality of our numerical calculations we first found analytical
solution to the problem which was later compared to numerical. We determined speedup coefficient S
after performing series of calculations on CPU and GPU for different solution domain dimensions (i.e.
different N) and determining respectful times of execution. All calculations where performed on CPU
and GPU devices listed in Tables 3.1 and 3.2.

3.1 Problem 1

Density function of sphere having radius R=10 is ρ = 1. Analytical solution for this problem is given
with function 2.2. Graph of analytical and numerical solution is displayed on Figure 3.1 together with
associated error. Figures are plotted for N=201 number of dots along each linear length of our solution
domain.

Execution time comparison for different values of N between CPU and GPU code is presented on
Figure 3.2 in log-log format. Speedup for N=121 is S = 52.6

3.2 Problem 2

Density function of sphere having radius R=10 is ρ = r2. Analytical solution for this problem is given
with function 2.3. Graph of analytical and numerical solution is displayed on Figure 3.3 together with
associated error. Figures are plotted for N=201 number of dots along each linear length of our solution
domain.

Table 3.1: CPU device properties
Intel Xeon

Version E5520 Device ID 0
Vendor Intel Corp. Size 1600 MHz

Capacity 1600 MHz Width 64 bits

Table 3.2: GPU device properties
GeForce GTX 285

Total global memory 1023 Mb Registers per block 16384x32 bits
Shared Memory per block 16 kb Warp size 32

Total constant memory 64 kb Maxthreads per block 512
Revision number 1.3 Multiprocessors 130

14



Figure 3.1: Analytical solution and deviation from analytical solution for ρ = 1. Analytical and numer-
ical solution displayed on top part of the figure match each other

Figure 3.2: Execution time dependence on number of steps N for ρ = 1

Execution time comparison for different values of N between CPU and GPU code is presented on
Figure 3.4 in log-log format. Speedup for N=121 is S = 52.6

15



Figure 3.3: Analytical solution and deviation from analytical solution for ρ = r2. Analytical and
numerical solution displayed on top part of the figure match each other

Figure 3.4: Execution time dependence on number of steps N for ρ = r2

3.3 Problem 3

Density function is given by ρ = e−r
2

with domain extended to entire space. This example is important
because here we have to calculate density for all points in the computational domain, while before

16



we had all density contained within a sphere of radius R = 10. Therefore here we try two different
approaches: calculating density on CPU and calculating both density and potential on GPU to further
optimize our code. Numerical solution is displayed on Figure 3.5 while execution time comparison
for different values of N between CPU and GPU code is presented on Figure 3.6 in log-log format.
Speedup for N=121 is S = 88.0 for GPU code and S = 111.7 for GPU+ code. Figures are plotted for
N=201 number of dots along each linear length of our solution domain.

Figure 3.5: Numerical solution for ρ = e−r
2

17



Figure 3.6: Execution time dependence on number of steps N for ρ = e−r
2
. GPU represents exe-

cution time dependence obtained calculating density on CPU, while GPU+ represents execution time
dependence obtained calculating density on GPU

18



Chapter 4

Discussion

First we can notice quality of our solutions in figures 3.1 and 3.3. Solutions are quite stable outside the
sphere and some minor deviations start as we approach surface of sphere. Here potential has to satisfy
continuity condition and also first derivative of potential has to be continuous. Deviations arise because
our algorithm cannot accurately approximate spherical surface of density domain. Error decreases as
radius of our density domain is expanded to larger values. As we approach to center of sphere error
steadily reduces to values close to the ones for points outside sphere. Hence we can deduce that for
non divergent density functions (like the ones in real world) solutions will be quite stable as long as
we are far from borders of density domain. Since in real world our domain is limitless for real world
application we need not bother with boundary errors. So for limitless domains our error pattern will
look like the one inside sphere of density ρ. We can also conclude that GPU and CPU calculations
equally well approximate solution to potential while working in single precision because of the same
error pattern shown in figures.

Figures 3.2, 3.4 and 3.6 display execution time dependence. We can see that for figures 3.2 and 3.4
execution is greatly accelerated when our calculations are performed using CUDA model. Running time
is decreased more than 50 times for N=121 steps and continues to decrease as we perform calculations
for greater N’s albeit in slower fashion. Because we have similar density functions and equal density
domains our times of execution do not differ between two problems. But for problem 3.6 where we
calculate potential in all points of solution domain execution time starts increasing rapidly for CPU
because of extended domain. Execution of CUDA algorithm is accelerated 88 times for N=121 and if
density is also calculated on GPU acceleration jumps to 111 times because more of a code is executed in
parallel fashion. Code could have been accelerated at even greater rates if we employed mathematical
functions with lesser precision but that would have contributed much more to overall error.

19



Chapter 5

Conclusions and recommendations

5.1 Conclusions

We have shown calculation of gravitational potential can be dramatically faster if implemented on
GPUs. Performing calculations in CUDA environment speeds up calculations multiple times espe-
cially for calculations involving huge data sets that are processed with same set of instructions. To
successfully utilise all possibilities of parallel programming user has to be familiar with CUDA thread
hierarchy and memory hierarchy. More powerful CUDA capable devices execute algorithm with greater
efficiency as does code that is highly optimized and adapt to CUDA environment using all its features.
We have observed this effect in calculating gravitational potential in a region of space having some
mass distribution ρ. First we have, if it was possible, determined analytical solution of problem. To
test performance of CUDA model we wrote a separate code for CPU and one to be used in CUDA
environment. After executing code and comparing analytical to numerical solutions it was shown that
numerical solution approximates analytical solution with great accuracy. After measuring run time for
both CPU and CUDA code it was shown that CUDA code speeds up calculations to over 100 times
with speedup factor being greater for huge data sets with maximum parallelization of all operations
to be executed on data. Therefore advantages of CUDA model are quite obvious for large problems
where execution of code can last up to day or two. However even though more powerful hardware
offers greater advantages to user, essential knowledge for successful solution to the problem is deep
understanding of CUDA model and intuition to resolve problem on independent sub-problems that can
itself be further resolved into smaller parts executed in parallel

5.2 Recommendations

To successfully solve given problems one should first become familiar with everything CUDA environ-
ment offers but also with its limitations. Although CUDA is very powerful environment it also requires
basic understanding and logic so approach to problem should not be just from programming point of
view but also from everyday experience in solving different problems that exhibit certain parallelism.
We can also improve precision using self-adaptive grid close to the surface of density domain thereby
more accurately approximate density surface. For spherical cases a spherical grid would be a better
choice, but we use spherical case only as a test of a general situation.

20



Appendix A

CPU code

Listing A.1: CPU source code

1 #include <stdio.h>
2 #include <math.h>
3 #include <stdlib.h>
4 #include <sys/time.h>
5 #include <iostream>
6 #include <iomanip>
7
8 float Density(int i,int j,int k) { // mass density
9 return exp(-(i*i+j*j+k*k));

10 }
11
12 float Mass; // total mass (integral of Density)
13 // capture moment function
14 static long myclock()
15 {
16 struct timeval tv;
17 gettimeofday(&tv, NULL);
18 return (tv.tv_sec * 1000000) + tv.tv_usec;
19 }
20 // initial final time difference function
21 double getRuntime(long* end, long* start)
22 {
23 return (*end - *start);
24 }
25
26
27 int main(int argc, char *argv[])
28 {
29 int N=atoi(argv[1]); //input to exe file
30 float Potential[N][N][N]; // potential
31 FILE *output;
32 int I, J, K; // counter over Potential
33 int i, j, k; // counter over Density
34 // computational cube center
35 int I0 = (int)((float)N/2.0);

21



36 int J0 = I0, K0 = I0;
37 float MassCell; // mass of a cell
38 int Itemp, Jtemp, Ktemp;
39 long start = myclock();
40 // set potential to zero:
41 for(I=-I0; I<=I0; I++) {
42 for(J=-J0; J<=J0; J++) {
43 for(K=-K0; K<=K0; K++) Potential[I+I0][J+J0][K+K0]=0.0;
44 }
45 }
46
47 // set total mass to zero:
48 Mass = 0.0;
49
50 // loop over points in space to calculate Mass
51 for(i=-I0; i<=I0; i++) {
52 for(j=-J0; j<=J0; j++) {
53 for(k=-K0; k<=K0; k++) {
54
55 // mass at point (i,j,k)
56 MassCell = Density(i,j,k);
57 Mass += MassCell;
58
59 if (MassCell > 0.0) // continute only if this cell has some mass
60 // loop over points in space to calculate Potential
61 for(I=-I0; I<=I0; I++) {
62 Itemp = (I-i)*(I-i);
63 for(J=-J0; J<=J0; J++) {
64 Jtemp= (J-j)*(J-j);
65 for(K=-K0; K<=K0; K++) if (I!=i || J!=j || K!=k) {
66 Ktemp = (K-k)*(K-k);
67 // add contribution to the potential at (I,J,K)
68 Potential[I+I0][J+J0][K+K0] -= (MassCell/sqrt(Itemp+Jtemp+Ktemp));
69
70 } } } // end of loop over points in space to calculate Potential
71
72 } } } // end of loop over points in space to calculate Mass
73 long end = myclock();
74 //return time of execution
75 std::cout << " " << std::setprecision(3)
76 << getRuntime(&end, &start)/1000000.0 << " " << std::endl;
77
78 return 0;
79 }

22



Appendix B

GPU code

Listing B.1: GPU source code

1 #include <stdio.h>
2 #include <stdlib.h>
3 #include <math.h>
4 #include <cuda.h>
5 #include <sys/time.h>
6 #include <iostream>
7 #include <iomanip>
8
9 #define BLOCK 512

10
11 //density fuction
12 float Density(int i,int j,int k) { // mass density
13 return exp(-(i*i+j*j+k*k));// return density at point in question
14 /*
15 if mass density is present only inside sphere R=10
16 if (i*i+j*j+k*k<=10*10) return 1.0; // constant density
17 else return 0.0;
18 */
19 }
20
21 //kernel function
22 __global__ void racunaj(float *d_potential, int N, unsigned int Ntot,
23 int l, int m, int n, float Mass)
24 {
25 //thread global coordinate
26 unsigned int tidx = blockIdx.x * blockDim.x + threadIdx.x;
27 int I0=(int)((float)N/2.); // center of sphere
28
29 // potential at (i,j,k)
30 float temp_potential = 0.0;
31
32 if (tidx<Ntot){
33
34 //calculate coordinates (i, j, k) of this thread
35 int i = tidx%N;

23



36 int j = ((tidx-i)/N)%N;
37 int k = (((tidx-i)/N)-j)/N;
38
39 // shift to the ceter
40 i -= I0; j -= I0; k -= I0;
41
42 if (i!=l || j!=m || k!=n) {
43 // contribution to the potential at (i,j,k) from (l,m,n)
44 temp_potential= d_potential[tidx]; // old value
45 temp_potential -= Mass / sqrtf((i-l)*(i-l) + (j-m)*(j-m) +
46 (k-n)*(k-n));
47 d_potential[tidx]=temp_potential; // new value
48 }
49 }
50
51 } // end of: __global__ void racunaj
52
53 // error check function
54 void checkCUDAError(const char *msg)
55 {
56 cudaError_t err = cudaGetLastError();
57 if( cudaSuccess != err)
58 {
59 fprintf(stderr, "Cuda error: %s: %s.\n", msg,
60 cudaGetErrorString( err) );
61 exit(EXIT_FAILURE);
62 }
63 }
64 // capture moment function
65 static long myclock()
66 {
67 struct timeval tv;
68 gettimeofday(&tv, NULL);
69 return (tv.tv_sec * 1000000) + tv.tv_usec;
70 }
71 // initial final time difference function
72 double getRuntime(long* end, long* start)
73 {
74 return (*end - *start);
75 }
76
77 int main(int argc, char *argv[])
78 {
79 int N=atoi(argv[1]);
80 // exe file arguments, N number of stepsop
81 unsigned int Ntot=N*N*N;
82 //gravitational potential at (x,y,z), pointer to host memory
83 float *h_potential;
84 //gravitational potential at (x,y,z), pointer to device memory
85 float *d_potential;

24



86 int I0=(int)((float)N/2.); // (I0, J0, K0) center of sphere
87 size_t size=N*N*N*sizeof(float);//size of memory to be allocated
88 int i,j,k;
89 float MassCell;
90 // capture initial time
91 long start = myclock();
92
93 //allocate memory to host
94 h_potential=(float *)malloc(size);
95 // allocate memory to device
96 cudaMalloc((void**) &d_potential, size);
97
98 // set potential values to zero
99 for (i=0; i<Ntot; i++) h_potential[i]=0.0;

100 // transfer zero values to device
101 cudaMemcpy(d_potential, h_potential, size, cudaMemcpyHostToDevice);
102
103
104 dim3 nThreads(BLOCK); // thread dimensions
105 dim3 nBlocks((int)(Ntot/BLOCK)+1);// Block dimension
106
107 ///////////////////////////////
108 // loop over points in space to calculate Mass
109 for(i=-I0; i<=I0; i++) {
110 for(j=-I0; j<=I0; j++) {
111 for(k=-I0; k<=I0; k++) {
112
113 // mass at point (i,j,k)
114 MassCell = Density(i,j,k);
115
116 if (MassCell > 0.0) // continute only if this cell has some mass
117 // run krenel
118 racunaj<<< nBlocks, nThreads >>>(d_potential, N, Ntot,
119 i,j,k, MassCell);
120
121 } } } // end of loop over points in space to calculate Mass
122 ///////////////////////////////
123 //checkCUDAError("kernel invocation");
124 // copy device array d_potential to host array h_potential
125 cudaMemcpy(h_potential, d_potential, size, cudaMemcpyDeviceToHost);
126 //checkCUDAError("memcpy");
127
128 //capture final time
129 long end = myclock();
130 // display execution time
131 std::cout << "" << std::setprecision(3)
132 << getRuntime(&end, &start)/1000000.0 << "" << std::endl;
133
134
135 FILE *output;

25



136 output=fopen("GPU_pot.txt", "w");
137
138 // write out potential in points (IO, J0, k)
139
140 i=I0;j=I0;
141 //for(i=0;i<N; i++)
142 //for(j=0;j<N; j++)
143 for(k=0;k<N; k++)
144 fprintf(output, "%d\t%e\n", k, h_potential[i+N*(j+k*N)]);
145
146 fclose(output);
147 //free memory space
148 cudaFree(d_potential); free(h_potential);
149
150 return 0;
151 }

Listing B.2: GPU+ source code

1 #include <stdio.h>
2 #include <stdlib.h>
3 #include <math.h>
4 #include <cuda.h>
5 #include <sys/time.h>
6 #include <iostream>
7 #include <iomanip>
8
9 #define BLOCK 512

10
11 //kernel density fuction
12 __global__ void Density(float *d_density, int N,
13 unsigned int Ntot) { // mass density
14
15 //thread global coordinate
16 unsigned int tidx = blockIdx.x * blockDim.x + threadIdx.x;
17 int I0=(int)((float)N/2.); // center of sphere
18
19 if (tidx<Ntot){
20
21 //calculate coordinates (i, j, k) of this thread
22 int i = tidx%N;
23 int j = ((tidx-i)/N)%N;
24 int k = (((tidx-i)/N)-j)/N;
25
26 // shift to the ceter
27 i -= I0; j -= I0; k -= I0;
28 //write density at (i, j, k) to d_density
29 d_density[tidx]=expf(-(i*i+j*j+k*k));
30 }
31 }
32 //kernel potential function

26



33 __global__ void racunaj(float *d_potential, int N, unsigned int Ntot,
34 int l, int m, int n, float Mass)
35 {
36 //thread global coordinate
37 unsigned int tidx = blockIdx.x * blockDim.x + threadIdx.x;
38 int I0=(int)((float)N/2.); // center of sphere
39
40 // potential at (i,j,k)
41 float temp_potential = 0.0;
42
43 if (tidx<Ntot){
44
45 //calculate coordinates (i, j, k) of this thread
46 int i = tidx%N;
47 int j = ((tidx-i)/N)%N;
48 int k = (((tidx-i)/N)-j)/N;
49
50 // shift to the ceter
51 i -= I0; j -= I0; k -= I0;
52
53 if (i!=l || j!=m || k!=n) {
54 // contribution to the potential at (i,j,k) from (l,m,n)
55 temp_potential= d_potential[tidx]; // old value
56 temp_potential -= Mass / sqrtf((i-l)*(i-l) +
57 (j-m)*(j-m) + (k-n)*(k-n));
58 d_potential[tidx]=temp_potential; // new value
59 }
60 }
61
62 } // end of: __global__ void racunaj
63
64 // error check function
65 void checkCUDAError(const char *msg)
66 {
67 cudaError_t err = cudaGetLastError();
68 if( cudaSuccess != err)
69 {
70 fprintf(stderr, "Cuda error: %s: %s.\n", msg,
71 cudaGetErrorString( err) );
72 exit(EXIT_FAILURE);
73 }
74 }
75 // capture moment function
76 static long myclock()
77 {
78 struct timeval tv;
79 gettimeofday(&tv, NULL);
80 return (tv.tv_sec * 1000000) + tv.tv_usec;
81 }
82 // initial final time difference function

27



83 double getRuntime(long* end, long* start)
84 {
85 return (*end - *start);
86 }
87
88 int main(int argc, char *argv[])
89 {
90 int N=atoi(argv[1]);
91 int thread_loop;
92 // exe file arguments, N number of steps
93 unsigned int Ntot=N*N*N;
94 //gravitational potential at (x,y,z), pointer to host memory
95 float *h_potential;
96 //gravitational potential at (x,y,z), pointer to device memory
97 float *d_potential;
98 //density at (x, y ,z), host and device pointers
99 float *h_density,*d_density;

100 int I0=(int)((float)N/2.); // (I0, J0, K0) center of sphere
101 size_t size=N*N*N*sizeof(float);//size of memory to be allocated
102 int i,j,k;
103 float MassCell;
104 // capture initial time
105 long start = myclock();
106
107 //allocate memory to host
108 h_potential=(float *)malloc(size);
109 h_density=(float *)malloc(size);
110 // allocate memory to device
111 cudaMalloc((void**) &d_potential, size);
112 cudaMalloc((void**) &d_density, size);
113
114 // set potential values to zero
115 for (i=0; i<Ntot; i++) h_potential[i]=0.0;
116 // transfer zero values to device
117 cudaMemcpy(d_potential, h_potential, size, cudaMemcpyHostToDevice);
118
119
120 dim3 nThreads(BLOCK); // thread dimensions
121 dim3 nBlocks((int)(Ntot/BLOCK)+1);// Block dimension
122 //calculate density for each point in space
123 Density<<< nBlocks, nThreads >>>(d_density, N, Ntot);
124 //copy data back to CPU
125 cudaMemcpy(h_density, d_density, size, cudaMemcpyDeviceToHost);
126
127 ///////////////////////////////
128 // loop over points in space to calculate Mass
129 for(i=-I0; i<=I0; i++) {
130 for(j=-I0; j<=I0; j++) {
131 for(k=-I0; k<=I0; k++) {
132

28



133 // mass at point (i,j,k)
134 MassCell = h_density[(i+I0)+N*((j+I0)+(k+I0)*N)];
135
136 if (MassCell > 0.0) // continute only if this cell has some mass
137 // run krenel
138 racunaj<<< nBlocks, nThreads >>>(d_potential, N, Ntot,
139 i,j,k, MassCell);
140
141 } } } // end of loop over points in space to calculate Mass
142 ///////////////////////////////
143 //checkCUDAError("kernel invocation");
144 // copy device array d_potential to host array h_potential
145 cudaMemcpy(h_potential, d_potential, size, cudaMemcpyDeviceToHost);
146 //checkCUDAError("memcpy");
147
148 //capture final time
149 long end = myclock();
150 // display execution time
151 std::cout << "" << std::setprecision(3)
152 << getRuntime(&end, &start)/1000000.0 << "" << std::endl;
153
154
155 FILE *output;
156 output=fopen("GPU_pot.txt", "w");
157
158 // write out potential in points (IO, J0, k)
159
160 i=I0;j=I0;
161 //for(i=0;i<N; i++)
162 //for(j=0;j<N; j++)
163 for(k=0;k<N; k++)
164 fprintf(output, "%d\t%e\n", k, h_potential[i+N*(j+k*N)]);
165
166 fclose(output);
167 //free memory space
168 cudaFree(d_potential); free(h_potential);
169 cudaFree(d_density); free(h_density);
170
171 return 0;
172 }

29



Bibliography

[1] NVIDIA Corporation. NVIDIA CUDA C programming guide. NVIDIA, http:
//developer.download.nvidia.com/compute/cuda/3_2/toolkit/docs/
CUDA_C_Programming_Guide.pdf, 2010.

[2] Wen mei W. Hwu, editor. GPU computing gems, emerald edition. Elsevier Inc., 2011.

[3] Jason Sanders and Edward Kandrot, editor. CUDA by Example. Addison-Wesley, 2010.

[4] M. Piskorec, ”Programiranje na GPU procesorima uz pomoc CUDA arhitekture”, FER, 2009.

[5] WIKIPEDIA, Gauss law, Semptember 2011. http://en.wikipedia.org/wiki/Gauss%
27_law_for_gravity.

[6] WIKIPEDIA, Gravitational potential, September 2011. http://en.wikipedia.org/
wiki/Gravitational_potential.

[7] WIKIPEDIA, Speedup, July 2011. http://en.wikipedia.org/wiki/Speedup.

[8] Electronic visualization laboratory http://www.evl.uic.edu/aej/525/pics/cuda_
memory.jpg.

30

http://developer.download.nvidia.com/compute/cuda/3_2/toolkit/docs/CUDA_C_Programming_Guide.pdf
http://developer.download.nvidia.com/compute/cuda/3_2/toolkit/docs/CUDA_C_Programming_Guide.pdf
http://developer.download.nvidia.com/compute/cuda/3_2/toolkit/docs/CUDA_C_Programming_Guide.pdf
http://en.wikipedia.org/wiki/Gauss%27_law_for_gravity
http://en.wikipedia.org/wiki/Gauss%27_law_for_gravity
http://en.wikipedia.org/wiki/Gravitational_potential
http://en.wikipedia.org/wiki/Gravitational_potential
http://en.wikipedia.org/wiki/Speedup
http://www.evl.uic.edu/aej/525/pics/cuda_memory.jpg
http://www.evl.uic.edu/aej/525/pics/cuda_memory.jpg

	Background
	Introduction
	CUDA-Compute unified device architecture
	Gravitational potential of spherical bodies

	Methods
	Analytical solution
	Numerical solution and time measurement

	Results
	Problem 1
	Problem 2
	Problem 3

	Discussion
	Conclusions and recommendations
	Conclusions
	Recommendations

	CPU code
	GPU code

