
Star removal on SDSS images

Dino Bektešević

Supervisor: izv.prof.dr. Dejan Vinković

Split, October 2013

Bachelor Thesis in Physics

Department of Physics
Faculty of Science
University of Split

Abstract

Sloan Digital Sky Survey (SDSS) is an astronomical survey program dedicated
to categorization of all detected astronomical objects. Here I present my work on
developing software tools for analyzing the SDSS image database in search for
trails left by objects that crossed the field of view of the telescope with different
speeds then the background sky. Such lines have not being detected by SDSS
imaging pipeline so far and can be of scientific interest if attributed to meteors.

Acknowledgements

I like to acknowledge mr. Erin Sheldon for extraordinary effort he put into tran-
scribing IDL packages to Python modules that made SDSS data analysis free and
open source. I would also like to extend my gratitude to him, for patience and good
will to respond whenever I needed help.

Contents

1 Introduction 1

2 Data Access and Preparation for Line Detection 4
2.1 Changes introduced to SDSSPY 6
2.2 Coordinates input and conversion 7
2.3 Histogram equalization and noise reduction 12

3 Line detection 16
3.0.1 Housekeeping . 23

4 Conclusions and recommendations 25
4.1 Conclusions . 25
4.2 Recommendations . 25

A Munu2Pix conversion function 26

B Full code listing 28

Bibliography 33

III

Listings

2.1 sdssFileTypes.par . 6
2.2 astrom.py . 7
2.3 Example of an SQL query . 7
2.4 CSV reader . 8
2.5 Crucial lines from GC to PIX conversion function 10
2.6 For loop for star removal . 11
2.7 Function for histogram equalization 14
2.8 Noise reduction loops . 14
3.1 Examples of strange ndarray behavior 18
3.2 Hough transformation . 19
3.3 Testing for presence of a line . 22
3.4 Code organization . 24
A.1 Munu2Pix function . 26
B.1 Full code listing . 28

IV

List of Figures

1.1 Star trails and CCD camera positions. 1
1.2 Schematic of SDSS CCD camera 2

2.1 Original image . 11
2.2 Result of star removal . 12
2.3 Result of histogram equalization 13
2.4 Result of noise reduction . 15

3.1 Cartesian and Hough space . 17
3.2 Test image for Hough transform 20
3.3 Hough space of test image . 20
3.4 Hough transform of example frame 20
3.5 First 5 detected lines . 21
3.6 First detected line . 21
3.7 Matrix positions . 23

V

Chapter 1

Introduction

The Sloan Digital Sky Survey (SDSS) is a high resolution, deep space, multi-filter
imaging and spectroscopic redshift survey dedicated to categorization and mea-
surement of all detected objects and their characteristics. SDSS is separated into 3
different phases (SDSS-I, 2000-2005; SDSS-II, 2005-2008; SDSS-III, 2008-2014),
with different goals but has always maintained all data publicly available and reg-
ularly issued. So far there has been 10 different data releases (DR) with a major
database and data quality overhaul made in DR9 to correct for astrometry system-
atic errors (see Christopher P. Ahn et al., 2012), so extra caution should be used if
dealing with older DRs.

Figure 1.1: Star trails and CCD camera positions.

SDSS uses a dedicated
2.5-m wide-angle optical tele-
scope, in design most similar
to Maksutov-Cassegrain type,
located at Apache Point Obser-
vatory (APO) in Sunspot, New
Mexico. Telescope records
the sky using drift scan imag-
ing method. In essence tele-
scope is fixed while, because
of the apparent motion of the
sky, long strips of the sky are
recorded. Efficiency of a con-
stantly recording CCD cam-
era when it comes to imaging

large parts of the sky, removal of systematic tracking error and consistent astrome-
try are the biggest advantages of this particular method.
However, compared to tracking method, drift scanning has a disadvantage when it
comes to imaging sky far from the equator. At high declinations curvature of star’s
path become obvious and variation of drift rate across the CCD camera causes
distortions (see Figure-1.1). This problem is solvable by using small alignable

1

CCD cameras or by great circle tracking. As a primary solution to distortions at
high declinations SDSS telescope uses great circle tracking and therefore requires
choreographed changes in right ascension (RA), declination (DEC) tracking rates
and image rotation, I discuss SDSS great circle coordinate system in more detail in
section 2.2.

Figure 1.2: Schematic of SDSS CCD camera

The telescope’s camera is made
up of thirty CCD chips, each
with a resolution of 2048x2048
pixels, totaling approximately
120 Megapixels. The chips
are arranged in five rows
of six chips (see Figure-1.2).
Each row has a different op-
tical filter (u, g, r, i and z)
with average wavelengths of
355.1, 468.6, 616.5, 748.1 and
893.1nm and limiting appar-
ent magnitudes of 22.0, 22.2,
22.2, 21.3 and 20.5, respect-
fully. To reduce noise the cam-
era is cooled to 120 ◦K (about
−80 ◦C) by liquid nitrogen.
For a more detailed technical
report see Gunn, Rockosi et al.
(1998).

Because of the drift tracking method, data are collected as a continuous tapestry.
For this paper and for general ability to navigate SDSS database it helps to under-
stand the terms SDSS database uses to describe the data. In the coordinate system
of the SDSS CCD camera shown in Figure-1.2 the sky drifts downwards. Each
such drift scan is referred to as a run and there is an associated integer identifying
the run. For science quality runs, the lowest run number is 94, and the highest
is 8162. Layout of filters are such that an imaging run results in six continuous
images associated with the six columns of CCDs. Each of these six are known as
camcols and are numbered from 1 to 6. Each camcol is 2048 pixels wide (the width
of the CCDs). The gaps between the camcols in most cases are filled by another
overlapping run. Each camcol is artificially broken up into a series of overlapping
fields, each 1489 pixels long. The term artificially is of importance because as a
consequence it carries that in a single CCD chip there can be multiple fields. Fields
refer to all 5 images in all 5 filter bands and are the basic unit for the photometric
pipeline. Astrometrical pipeline, however, processes a frame. Frame refers to an
image uniquely identified by its run-camcol-filter designation. They are designed
to be overlapping by a 128 pixels within a run so that objects are not mis-detected
due to being too close to the edge of a field. Finally, there have been multiple

2

reprocessing of the data over the years1. Each reprocessing, called a rerun, has
been denoted by an integer, the first being rerun 0 and the latest being rerun 301.
Each rerun consists only in a change to the photometric pipeline, not to the data
itself. Important thing to mention as well is that all image data is in FITS format
and is accessed through Science Archive Server (SAS) while all extracted data is
accessed over Catalog Archive Server (CAS)2.

Main goal of this paper is to use the SDSS data for the purpose of extracting
images with “lines”. These “lines” are left behind by objects passing with different
speed then that of the sky. This includes living creatures, like bugs and bats, and
inanimate ones, such as car headlights, asteroids, comets or meteors. CCD related
phenomena such as blooming or ghosts also leaves lines. I am interested only in
lines most likely left on the image by meteors, and will refer to such lines as trails.

Meteors are solid objects ranging in size from microns to meters that burn out
upon entering Earth’s atmosphere. They are separated into two categories depend-
ing on their source of origin: sporadic and meteor showers. Sporadic meteors are
solid objects “floating” through the Solar system with no apparent body of ori-
gin while meteors from meteor showers are largely attributed to orbits of comets3

(Jenniskens P., 2006). Determining orbits of meteors in a meteor shower enables
us to determine an approximate path of a comet thus allowing us its detection.
Due to relatively short lives of comets (Whitman, Morbidelly, Jedick, 2006) most
of today meteor showers are but small remnants of a dead comet. However, it
is estimated that 6% of the dangerous population of near Earth asteroids (NEO)
are comet cores no longer experiencing out-gassing (Whitman, Morbidelly, Jedick,
2006). This fact makes detecting meteor showers of great importance. Interna-
tional meteor organization (IMO)4 has been collecting visual meteor observation
since 1988. In recent times projects like Croatian meteor network (HMM)4 have
started conducting video observation. As mentioned above the limiting apparent
magnitudes of CCD camera in SDSS ranges from 20.5 to 22.2 magnitudes which is
incredibly dim. In comparison consider that limiting apparent magnitude of human
eye in best conditions is 6, limiting apparent magnitude of a video camera is even
less (∼4), and that of the Hubble space telescope for visible light is only 12. It fol-
lows that trails must have been left by very small objects not capable of saturating
the entire image, which makes their detection very valuable. Discovering that there
is a faint meteor shower still not detected grants us a better view of distribution of
dust, as well as some of its properties such as grain size or density along Earth’s
orbit and of course valuable information about the population of comets through
history5.

1Older literature may refer to deprecated nomenclature (scanline, strip, stripe, field and run)
2see http://www.sdss3.org/dr8/data_access.php for other download options.
3see also: Whipple F. L. (1951)
4IMO: urlhttp://www.imo.net/; HMM: http://www.astro.hr/hmm/
5A long standing debate about the origin of life on Earth proposes that comets played a crucial

role by “delivering” water Fernandez J. A. (2006) and provoking shock synthesis of amino acids
Martins, Price, Goldman et al. (2013) makes this an interesting information to know

3

http://www.sdss3.org/dr8/data_access.php
http://www.astro.hr/hmm/

Chapter 2

Data Access and Preparation for
Line Detection

SDSS database already contains approximately 60TB of data and each year of
operation gathers about 5TB of new raw data (Gray, Szalay, Thakar et al., 2012).
The main goal of this paper to write a program that saves frames with detected trails
and rejects others for the entire SDSS database. Hence, the obvious restriction is
the execution time. Furthermore, a high detection rate, that is detection confidence,
is desirable. For about 9.5 million images even 80% detection confidence leaves
760 thousand images in need of re-checking manually. That means that the method
of trail detection used should be as resistant to “noise” and outliers interference as
possible. It is unrealistic to expect a noise-proof method. Thus, noise-reducing
algorithms should be considered as a processing tool as well. Of course, a high
level of program modularity should also be present in cases where another, more
beneficial, method of image processing is found. A quick replacement should be
made in such a case, without the need of a major program overhaul. Modularity
implies the need for a procedural or object oriented programming paradigm. The
need for editing large amount of files also points to a higher level programming
language and finally for convenience reasons programming language used should
be supported as much as possible.

SDSS, officially, supports and offers solutions only for IDL1 programming lan-
guage which comes with a hefty price. After careful considerations and a brief
excursion into C++ and NASA written library fitsio2, I have settled on Python.
Python is a dynamically and strongly typed, completely object oriented program-
ming3 language with high interactive capabilities. Because Python is distributed
as open source, it is heavily supported as well. Neat consequence of such rigor-
ous object orientation is seen in it is interactive abilities, where, once a program is

1http://www.exelisvis.com/ProductsServices/IDL.aspx
2heasarc.gsfc.nasa.gov/fitsio/ Page is currently down due to lack of agreement on

funding and “Obamacare”
3To the extent that even integers are treated as objects!

4

http://www.exelisvis.com/ProductsServices/IDL.aspx
heasarc.gsfc.nasa.gov/fitsio/

compiled, all functions and classes are imported as a stand alone objects callable
independently from within IDL. This provides a steep learning curve as well as
great debugging and introspection possibilities.

I will use Python in conjecture with three independent modules, equivalent to
a library in C++, all of which were written by Erin Sheldon. SDSSPY4 is a set of
tools for working with SDSS data and it was necessary to implement a few changes
in the original code for purposes of this paper (see section 2.1). SDSSPY depends
on ESUTIL5 module for coordinate calculation. A special module for handling
FITS files is needed as well. Luckily mr. Sheldon already wrote Python wrappers
for aforementioned NASA’s fitsio library with the same name6. These modules
depend extensively on NUMPY and SCIPY. NumPy is a powerful scientific open
source module for numerical calculations and among other things contains the fa-
mous powerful n-dimensional array object: ndarray. SciPy is yet another powerful
open source tool designed for numerical calculations, predominantly integration
and optimization routines. I would recommend, instead of using NumPy and SciPy
separately, to rather use SciPy Stack which consists of various modules including
NumPy, SciPy core, Matplotlib and IPython. This also means that because NumPy
and SciPy still do not fully support Python versions past 3.0, an older Python ver-
sion is needed. Last stable version is Python2.7 and that is the used version in this
paper.

Now that I posses the necessary tools, a more detailed approach to the image
analysis can be made. First step is to remove the most obvious interference - stars
themselves. To do that I need to locate their position on the image. I can retrieve
star coordinates in equatorial system through CAS. With SDSSPY module, more
specifically Astrom class, which is dedicated to coordinate conversion, I can re-
trieve coordinates in pixels on the image itself. I would need to determine star’s
approximate size on the image to know how much of the image to delete. After
I have gotten rid of all the stars what is left is noise and trails. I defined noise as
all isolated, dim pixels. However, I cannot simply go through the image and delete
all dim pixels because I would lose all the dim trails. I have decided to, due to
peculiarities of FITS format, set all negative pixels to 0 and then do a histogram
equalization. Next step would be to search for isolated pixels and remove them,
and only after this step I search if an image contains trails or not. I have decided
on using Hough transform for locating lines in images. In following chapters I
will detail some interesting programming solutions and provide a case study of
frame-i-002888-1-139.fits as an example of progress so far.

4http://code.google.com/p/sdsspy/
5http://code.google.com/p/esutil/
6https://github.com/esheldon/fitsio

5

http://code.google.com/p/sdsspy/
http://code.google.com/p/esutil/
https://github.com/esheldon/fitsio

2.1 Changes introduced to SDSSPY

SDSSPY module consists of 10 different modules: astrom, atlas, family, files,
flags, util, yanny and window. Modules I am interested in are files and astrom.

Files module is used for creating filenames based on SDSS database default
nomenclature frame-filter-run-field.fits. However files module has no support for
creating CAS SDSS names. CAS files are retrievable by a SQL query and are
returned in a specified form. For simplicity I retrieve the catalog data in a comma
separated value (CSV) file. Upon closer inspection of files module it is obvious
that an instance of a class FileSpec uses a function expand sdssvars to expand
variables sent to the FileSpec object and then through string manipulation provide
a filename. File locations are generally defined relative to certain root directories,
which are themselves defined by environment variables, e.g. $ PHOTO REDUX.
These locations are described for each file type in sdssFileTypes.par which is, for a
default install, located in usr/local/share. A short snippet of the sdssFileTypes.par
is provided below with line 16 (CSVCoord) already edited in.

Listing 2.1: sdssFileTypes.par
1 typedef struct {
2 char ftype[50];
3 char dir[255];
4 char name[255];
5 int ext;
6 } FILETYPE;
7
8 FILETYPE CSVCoord $BOSS_CAS CAS-$RUNSTR-$COL-$FIELDSTR.csv 0
9 FILETYPE sdssMaskbits $SDSSPY_DIR/share sdssMaskbits.par -1
10 FILETYPE sdssFileTypes $SDSSPY_DIR/share sdssFileTypes.par -1
11 FILETYPE runList $PHOTO_REDUX runList.par -1

Note that $RUNSTR means a padded run string, e.g. 000756 whereas $RUN-
NUM is unpadded. $COL means an unpadded version of camcol, $FIELDSTR
means a 4-padded field string, there are no unpadded versions for calcom and field,
and finally $FILTER stands for filter designation (’r’, ’g’, etc...) I was unable to
determine the meaning behind extensions, numbers ranging from -1 to 6. After
contacting mr. Sheldon he clarified those are error extensions for files that have to
be determined before a program runs and therefore not of grave importance to me.

Second thing to edit in SDSSPY module is the astrom module. Astrom module
is a container for Astrom class that primarily deals with various coordinate conver-
sions. Changes introduced in this module are purely for error tracking, because,
as I discovered, not all coordinate conversions succeed (see section-2.2). Out-of-
context edited code snippet is presented (see Listing-2.2), just to point out the exact
changes made. Err ra and err dec are global variables defined outside the Astrom
class and are used to store values of RA and DEC which failed to converge. Code
snippet is part of munu2pix method defined in Astrom class.

6

Listing 2.2: astrom.py
1 if ier != 1:
2 raise ValueError("Fsolve() could not find convergence for ra:

{}, dec: {} initial guess: row:{} col:{} final guess: row
:{} col:{} field:{} filter:’{}’ mu:{} nu:{}".format(err_ra
, err_dec, row_guess, col_guess, rowcol[0], rowcol[1],
field, filter, mu, nu))

3
4 if are_scalar:
5 row=row[0]
6 col=col[0]
7
8 return row,col

2.2 Coordinates input and conversion

As I mentioned in section-2.1, I retrieve Coordinates from an SQL query made to
CAS, as seen in Listing-2.3. The retrieved file is then read into a dictionary by
using an inbuilt Python module named csv, as seen in Listing-2.4. Python dictio-
nary is similar to lists except each input in the list can have attributes appended to
it. Thus a dictionary with input “persons” can hold additional attributes (such as
“age”, “height”, etc.), for each instantiated “person”. Originally I used my own
parser for CSV files, however that required a lot of maintenance. For example, if
I should decide not just to input objects ra, dec and magnitude in filters, but other
attributes as well, then I have to add them manually. In comparison, the csv mod-
ule names the attributes based on the first row of the file, so I have decided against
using my parser.

Listing 2.3: Example of an SQL query
1 SELECT p.objid,p.ra,p.dec,p.u,p.g,p.r,p.i,p.z
2 FROM PhotoObj p
3 WHERE p.run = 2886 AND p.camcol = 4 AND p.field = 146

CSVRead is still a function (see section-3.0.1) and is called by passing a path to
the .csv file. This is where change of sdssFileTypes.par (see Listing-2.1) comes in
handy. Because I want this program to run automatically on a large lists of files
it is unpractical to manually define a path for each CSVCoord file. By editing the
the files module I have enabled the function sdsspy.filename(fileType, run, camcol,
filter, frame) to dynamically create new filenames for CAS CSV files.

7

Listing 2.4: CSV reader
1 """Example of how to call CSVRead function"""
2 Coord = CSVRead(sdsspy.files.filename(’CSVCoord’, run=_run,
3 camcol=_camcol, field=_field))
4
5 def CSVRead (path):
6 """
7 Defines a function that reads CSV file given by
8 (str) path into a list of dictionaries.
9 Returned list is arranged as
10 {[ra:, dec:, u:, g:, r:, i:, z:],
11 ...}.
12 """
13 labels=[’ra’, ’de’, ’u’, ’g’, ’r’, ’i’, ’z’]
14 read = csv.DictReader(open(path), labels, delimiter=’,’,

quotechar=’"’)
15 lines = list()
16 for line in read:
17 lines.append(line)
18 return lines

The SDSS has two sets of coordinates which are specially designed for the
survey geometry. The natural coordinate system to use for processing a given run
is the great circle coordinate system for that stripe (µ,ν) in which the equator of
the coordinate system is the great circle tracked by the scan. This great circle
is inclined by i = ν + 32.5◦ to the J2000 celestial equator, with an ascending
node of 95◦. Coordinate µ increases in the scan direction (east) and ν increases
to the north. The second set is the Survey (ξ,η) system. This is a rotated and
mirrored spherical coordinate system, where (ξ,η)=(0,90) corresponds to equatorial
coordinates (α, δ) = (275, 0) and (ξ, η)=(57.5,0) corresponds to (α, δ) = (0, 90).
Also, η runs only from −90◦ to 90◦ while the “back” of the sphere is covered by
ξ, which runs from −180◦ to 180◦ which is the opposite of expected. To quote
Michael Blanton: “These conventions defy logic, and please don’t blame me for
them.”7. An especially important approximation for narrow-field astrometry is the
tangent-plane mapping (Keel B., 2006) given by equations:

cot(δ − δ0) sin(α− α0) =
ξ

sin(δ0) + η cos(δ0)
(2.1)

cot(δ) cos(α− α0) =
cot(δ0)− η sin(δ0)

sin(δ0) + η cos(δ0)
(2.2)

Tangent-plane mapping is basically a projection of part of the celestial sphere out-
ward onto a plane tangent to it at a reference point (α0, δ0). Luckily for a very
small coordinate differences I am allowed to approximate the change of the (ξ,η)
in reference to pixel coordinates by a linear transformation where the general equa-
tions for tangent-plane mapping are cut drastically short. To that point SDSS offers

7http://cosmo.nyu.edu/˜mb144/tiling_docs/surveycoords.html

8

http://cosmo.nyu.edu/~mb144/tiling_docs/surveycoords.html

coordinate information of a reference point, pixel scale and pixel orientation of an
image in its FITS header. Even more data is available in the photoField.fits files,
such as PSF function, distortion factors, error estimations for (µ,ν) coordinates
etc... Values of interest are given by keywords:

CTYPE1 describes type of approximation for following variables

CTYPE2 describes type of approximation for following variables

CUNIT1 describes unit type, usually degrees

CUNIT2 describes unit type, usually degrees

CRPIX1 gives column pixel coordinate of reference pixel

CRPIX2 gives row pixel coordinate of reference pixel

CRVAL1 gives RA of reference pixel

CRVAL2 gives DEC of reference pixel

CD1 1 gives change of RA in degrees per column pixel

CD1 2 gives change of RA in degrees per row pixel

CD2 1 gives change of DEC in degrees per column pixel

CD2 2 gives change of DEC in degrees per row pixel

Coordinate conversion is thus made in 2 steps. First I need to convert equatorial
coordinates (α, δ) from CSVCoord file into great circle coordinates using equa-
tions 2.3 and 2.4 and secondly, with the new acquired great circle coordinates, I
need to acquire pixel coordinates (x, y) using equations 2.5 and 2.6.

cot(δ) sin(α− CRV AL1) =
ξ

sin(CRV AL2) + η cos(CRV AL2)
(2.3)

cot(δ) cos(α− CRV AL1) =
cot(CRV AL2)− η sin(CRV AL2)

sin(CRV AL2) + η cos(CRV AL2)
(2.4)

ξ = CD1 1(x− CRPIX1) + CD1 2(y − CRPIX2) (2.5)

η = CD2 1(x− CRPIX1) + CD2 2(y − CRPIX2) (2.6)

Unfortunately, given functions are in their implicit form. If I pick a pixel on the
image, it is easy to acquire survey coordinates from equations 2.5 and 2.6 and eas-
ier still to recover RA and DEC coordinates from 2.3 and 2.4. That is, the pixel
to equatorial conversion follows directly from the equations, but the inverse con-
version does not and the solution has to be found numerically. Solutions to those
equations are its roots, which can be found using scipy.optimize.fsolve() function

9

that requires an initial guess of (x,y) and then iterates their values until a con-
vergence or precision criteria is met. I have commented only particular lines of
interest from conversion code in a code snippet Listing-2.5 because of its length.
For context you can locate the full function in appendinx-A

Listing 2.5: Crucial lines from GC to PIX conversion function
1 def munu2pix(self, field, filter, mu, nu, color=0.3):
2 import scipy.optimize
3 mu,nu,are_scalar=get_array_args(mu,nu,"mu","nu")
4 color=self._get_color(color, mu.size)
5
6 #since munu2pix is a class instance in its load
7 #function a trans variable is defined containing all
8 #fields from the FITS header
9 trans=self.trans
10 w=self._get_field(field)
11 fnum=self._get_filter_num(filter)
12 if ’f’ in trans.dtype.names:
13 fname=’f’
14 else:
15 fname=’ff’
16
17 # saving data read from photoField.fits file for
18 #the scipy.optimizer module
19 #fd is a list that contains aforementioned data [CRVAL etc...]
20 fd={’a’:trans[’a’][w,fnum],
21 ’b’:trans[’b’][w,fnum],
22 #....snipped for space saving reasons.....
23
24 #initial best guess for (x,y) coord
25 row_guess = (mudiff*fd[’f’] - fd[’c’]*nudiff)/det
26 col_guess = (fd[’b’]*nudiff - mudiff*fd[’e’])/det
27 rowcol_guess=array([row_guess[i], col_guess[i]])
28
29 for i in xrange(mu.size):
30 self._tmp_color=color[i]
31 self._tmp_munu=array([mu[i],nu[i]])
32 rowcol_guess=array([row_guess[i], col_guess[i]])
33 #fsolve() is a function that solves non-linear and
34 #linear equations and systems of eq. for their roots
35 rowcol, infodict, ier, msg = scipy.optimize.fsolve(

self._pix2munu_for_fit, rowcol_guess, full_output=
True)

36
37 row[i] = rowcol[0]
38 col[i] = rowcol[1]
39
40 #part of astrom.py edited in Changes introduced to SDSSPY
41 # also snipped for space saving reasons.....

Although the solution should always exist, one is not always found. In some cases
the fsolve() function simply does not converge sufficiently fast or the solution to
equations 2.5 and 2.5 seems to be unstable and the function excepts. Until the

10

changes in section 2.1 were not made, this caused the program to terminate, which
is why that change is crucial. Python, as well as other higher level programming
languages, has a class for error handling enabling a programmer to handle any
exception that arises. So far I only print out these errors to determine the stability
of the solution. Removing stars now becomes just a matter of repeating the same
procedure for each star located in the dictionary of star coordinates:

Listing 2.6: For loop for star removal
1 for star in Coord:
2 try:
3 ra = float(star[’ra’])
4 de = float(star[’de’])
5 xy = conv.eq2pix(_field, _filter, ra, de)
6 x, y=xy[0], xy[1]
7 img[x-30:x+30, y-30:y+30].fill(0.0)
8 #so far I have not yet implemented any kind
9 #of star size estimation factors

10 except ValueError as err:
11 print err.message
12 starConv_errnum+=1
13 pass
14 print "{} coordinate conversions failed. Total number of stars

on the image: {}".format(starConv_errnum, len(Coord))

First comparison of the image with removed stars, shown in Figure-2.2, with the
original frame-i-002888-1-139.fits, shown in Figure-2.1, can be made now. It is
obvious that the line will be easier to detect now, that stars are removed. However,
overall image is still very dim and, as you will see in section 2.3, it hides a lot of
noise and other artifacts.

Figure 2.1: Original image

11

Figure 2.2: Result of star removal

2.3 Histogram equalization and noise reduction

Histogram equalization is a process of amplification of image contrast. For exam-
ple, an image of dynamic range 255, in which pixels never achieve intensity values
larger than 100, the entire dynamic range of 155 values is left unused. By equaliz-
ing histogram of such an image, highest intensity pixels will assume the values of
255 while other pixels will linearly distribute themselves by intensity depending on
the value of the unused dynamic range. This step is necessary for noise reduction
because I use a method for noise removal that detects if a pixel is neighbored by
less than 3 other pixels with high intensities. First step is a construction of a his-
togram which is done using an inbuilt NumPy function histogram(). Cumulative
distribution function (see equation-2.7) has to be found, which is basically just a
histogram of probabilities that a pixel will obtain a particular intensity value. In-
built NumPy function cumsum() is used for that. Using a basic linear interpolation
function, the general histogram equation 2.8 can be satisfied and new values for
pixel intensities obtained. In equation-2.7 px(i) stands for the probability of an
occurrence of a pixel of level i in the image, while in the general histogram (equa-
tion 2.8) M and N are the image dimension in pixels and L is the number of gray
levels that cdf has been normalized to. For my example this reduces equation-2.8
to equation-2.9, where cdfmin is often equal to 1.

cdfx(i) =

i∑
j=0

px(j) (2.7)

12

h(v) = round

(
cdf(v)− cdfmin

(M ∗N)− cdfmin
(L− 1)

)
(2.8)

h(v) = round

(
cdf(v)− cdfmin

3049472− cdfmin
∗ 255

)
(2.9)

End result of histogram equalization is shown in Figure-2.3. This step obviously
exaggerates the trail which is beneficial but it also exaggerates noise.

Figure 2.3: Result of histogram equalization

I find that it is easier to deal with noise then it was to detect faint trails. I have
an implementation of my own histogram equalization function which functions
perfectly. However, later I found that a openCV2 module function equalizeHist()
works faster and better because it uses an adaptable area equalization with which
areas of image that meet certain criteria are weight-equalized for the values of that
local area, thus providing adaptable contrasting throughout the image. I discuss
openCV2 module later on in chapter-3. I present you with my histogram equaliza-
tion function in code-snippet Listing-2.7.

13

Listing 2.7: Function for histogram equalization
1 def histeq(image,nbr_bins=256):
2
3 #create image histogram
4 imhist,bins = histogram(im.flatten(),nbr_bins,normed=True)
5 #create cumulative distribution function
6 cdf = imhist.cumsum()
7 #normalize to 256 bins
8 cdf = 255 * cdf / cdf[-1]
9 #use linear interpolation of cdf to find new pixel values
10 im2 = interp(im.flatten(),bins[:-1],cdf)
11
12 return im2.reshape(im.shape), cdf

Noise reduction is done with a “brute-force” method, meaning that I use a 3x3
matrix that I “drag” across the image storing values of the 8 pixels neighboring
the central pixel. I calculate average value of that matrix and if average value is
smaller than or equal to 85, central pixel is set to 0. The value 85 is a first hand
approximation, based on a scenario where a central pixel has 3 neighboring pixels
of intensity of 255 and the rest have zero value, which gives the matrix average
of 85. I have experimented with other noise reduction algorithms, most of which
were actually made for color images, and this one showed the best results for the
least processing time spent. Code snippet 2.8 shows the code part that deals with
noise reduction. It is integral part of a bigger function process field() and not a
stand alone function:

Listing 2.8: Noise reduction loops
1 n_x, n_y=equ.shape
2 for x in range (1, n_x-2, 1):
3 for y in range(1, n_y-2, 1):
4 if equ[x, y] != 0:
5 li = [equ[x-1, y+1], equ[x, y+1], equ[x+1, y+1],
6 equ[x-1, y], equ[x, y], equ[x+1, y],
7 equ[x-1, y-1], equ[x, y-1], equ[x+1, y-1]]
8 aver = numpy.average(li)
9 if aver<=85:
10 equ[x, y]=0

Results after noise reduction are shown in Figure-2.4.

14

Figure 2.4: Result of noise reduction

15

Chapter 3

Line detection

Finally, with the newly prepared image-2.4 I have a proper basis for line detection.
The image is represented in the code by a two dimensional ndarray object storing
the new values 0-255 of pixel intensities, where 0 represents black, while all the
other values, as a result of histogram equalization, are in the range [1, 255]. I have
experimented with 2 different algorithms for line detection.

Random sample consensus (RANSAC) method is based on iterative method of
randomly selecting a set number of points from all the data and fitting a line model
to this set by assuming its points are inliers. The fit is then iteratively corrected by
removing outliers and adding new points. Standard deviation and line parameters
are saved and process is repeated until satisfying standard deviation is achieved or
until all possibilities are exploited. If a satisfying solution is not found then the
method returns a zero value. Although fairly easy to program, RANSAC method
is very unstable for large images, as in my case, and it is very subjective to noise
interference. Instances when 2 clustered high valued pixel sets exist somewhere on
the image are usually always detected by RANSAC method because of their small
standard deviation.

16

Hough transform is the second method I experimented with. In theory this
method is almost impervious to noise and outliers interference. It consists of map-
ping the non-zero valued pixel coordinates to a polar coordinate system, as shown
in Figure-3.1 taken from mr. Nabin Sharma’s webpage1.

Figure 3.1: Cartesian and Hough
space

In Cartesian coordinates a line is rep-
resented by equation-3.1, called the slope-
intercept form. By parameterizing the line
slope m and intercept parameter b, we can
rewrite the equation-3.1 as equation-3.2 and by
rearranging that equation we get to the final
form seen in equation-3.3.

y = mx+ b (3.1)

y = −cos(θ)
sin(θ)

x+
r

sin(θ)
(3.2)

r = x cos(θ) + y sin(θ) (3.3)

The transformed coordinate space which has θ
and r as its axes is called Hough space. A point
in Cartesian space is mapped to a sinusoidal
curve in Hough space. A set of points belong-
ing to a line in Cartesian space get mapped to a
set of sinusoids intersecting at a point in Hough
space. So the problem of detecting a line in an
image becomes a problem of detecting a point
in Hough space. Once we detect the points
in Hough space, we can do inverse transform,
by using equation-3.2, to get the correspond-
ing line parameters in Cartesian space. Basic
Hough transformation algorithm is fairly easy

to produce. Following the instructions1 firstly I instantiate a 2D ndarray object,
or accumulator, with zeros to store the values of (r, θ). Size of this array depends
on the desired accuracy, described by values theta res and rho res. Obviously if
I take that θ step is 1◦ my array size will be 180 columns large, while the, rows,
values of r are determined by the maximum possible distance on the image, that is
its diagonal. Algorithm “walks” over the image and for each pixel with non-zero
value constructs a sinusoidal curve by calculating values of r for all allowed val-
ues of θ determined by step size and stored in 1D array named theta. Constructed
sinusoidal curves are thus quantized per-pixel, binned. Next step is to increment
by 1 all the pixels in accumulator array, through which the constructed sinusoid

1http://nabinsharma.wordpress.com/2012/12/26/linear-hough-
transform-using-python/

1,

17

passes through. Here a special trick of NumPy ndarrays comes in handy. It is
possible to subtract an constant value (i.e. integer, double float) from a ndarray.
Returned result is the entire ndarray subtracted member-by-member with the con-
stant. Furthermore because Python is so drastically object oriented, as mentioned
in chapter-2, an instantiated object is held as a true value and thus we are able to
compare ndarrays holding boolean values with ndarrays holding variables of any
other type. This is known as boolean indexing. Comparing two ndarrays of inte-
gers using == logical operator will return a ndarray of True values for all the fields
containing the same values, and False values for other fields. Furthermore the re-
turned ndarray is a index representative of actual data, 1 for True and 0 for False,
upon which further integer/float/double manipulation can be made. I provide basic
examples in code snippet-3.1 which will, hopefully, shed more light on this matter:

Listing 3.1: Examples of strange ndarray behavior
1 # A and B are 1D ndarrays with some values
2 A
3 >>>>array([1, -2, -5.5, -7.3])
4 B
5 >>>>array([0, 0, 0, 0])
6 C = A == B
7 C
8 >>>>array([False, False, False, False])
9 C = A > B
10 C
11 >>>>array([True, False, False, False])
12 C.sum() #sum of all members
13 >>>> 1
14 5-C
15 >>>>array([4, 5, 5, 5])

In line 31 of code snippet-3.2 this is exactly what is done. First we create an ndarray
for binning purposes. This array holds the absolute difference of rho, non-binned
evenly spaced ndarray containing values of r, and the calculated value rhoval for
current theta value. Secondly we find the minimum value of that same array. By
comparing the values using == logical operator we return a boolean ndarray con-
taining values True for indices of, now binned, values of r. Operator nonzero()
returns indices of all the True values in the ndarray and by the last command we
increase the value of those indices in the accumulator array H which represents
Hough space.

18

Listing 3.2: Hough transformation
1 import numpy as N
2 def hough_transform(img_bin, theta_res=1, rho_res=1):
3 nR,nC = img_bin.shape #read the size of the image
4 #creates a simetrically filled array holding binned
5 #values of theta
6 theta = N.linspace(-90.0, 0.0, N.ceil(90.0/theta_res) + 1.0)
7 theta = N.concatenate((theta, -theta[len(theta)-2::-1]))
8
9 #calculate the size of the diagonal, round it up

10 D = N.sqrt((nR - 1)**2 + (nC - 1)**2)
11 q = N.ceil(D/rho_res)
12 nrho = 2*q + 1
13 #creates an evenly spaces, non binned, ndarray
14 #holding values for rho, size of the array is
15 #determined by rho resolution (rho_res) and
16 #the lenght of the diagonal
17 rho = N.linspace(-q*rho_res, q*rho_res, nrho)
18 #create the acumulator ndarrray
19 H = N.zeros((len(rho), len(theta)))
20 #list through the entire image
21 for rowIdx in range(nR):
22 for colIdx in range(nC):
23 if img_bin[rowIdx, colIdx]:
24 for thIdx in range(len(theta)):
25 rhoVal = colIdx*N.cos(theta[thIdx]*N.pi/180.0) + \
26 rowIdx*N.sin(theta[thIdx]*N.pi/180)
27 #bin and return indices of appropriate rho
28 rhoIdx = N.nonzero(N.abs(rho-rhoVal) == N.min(N.abs(rho-

rhoVal)))[0]
29
30 H[rhoIdx[0], thIdx] += 1
31 return rho, theta, H

In Figure-3.3 I show the results of Hough transform for a test image shown in
Figure-3.2. What remains is to detect local maxima and invert (r, θ) to (m, b)
using equation-3.2. However, I have to note that local maxima detection is a harder
problem then it seems. In Figure-3.3 the two maxima are obvious, but notice in
Figure-3.4 that maxima are much harder to notice. Because of binning of (r, θ)
it is not necessary that the highest valued pixel is precisely the searched value of
(m, b) which can lead to significant deviation for large enough images. Presented
algorithm was tested on multiple images and is very unstable. Execution times
of presented code Listing-3.2 varies between 15 and 360 seconds and increases
drastically with the size of the image, after all it is executing a number of higher
level operations per image pixel. Resizing the image to smaller size shortens the
execution time, however resizing the image to half its size inevitably deletes half of
present information on it. In practice this means that dim and thin trails get deleted
which is unacceptable.

19

Figure 3.2: Test image for Hough trans-
form

Figure 3.3: Hough space of test image

Figure 3.4: Hough transform of example frame

I turned for help to OpenCV (Open Source Computer Vision) - a Python library,
originally written in C but ported to Python, Java, C++ and others. OpenCV is an
immensely powerful computer vision library able to analyze real time video input
and is used as a solution in industrial and commercial software. Available in this
module are two different Hough transforms for lines, a probabilistic and “normal”
Hough transform. Probabilistic Hough transformation is able to detect line seg-
ments, however it is slower and lacks in detection confidence. Due to the straight-
forward problem I am facing, I decided to use HoughLines function, which is both
more precise, stable and faster. I have tried locating the original source code for the
function, but despite OpenCV being an open source computer vision and machine
learning software library, I was unable to locate a single repository providing me
with full source code. What I could make out from the Python wrappers, function
firstly detects edges on the image using Canny edge detection algorithm and only
then proceeds to search for lines. OpenCV Hough line detection algorithm is ex-
tremely stable and fast. It eliminates the need for image resizing and is capable
of processing the entire 2048x1489 pixel image in under 10 seconds. Results of
OpenCV applied to Figure-2.4 is shown in Figure-3.5 for the first 5 maxima and in
Figure-3.6 for the first detected maximum.

20

Figure 3.5: First 5 detected lines

Figure 3.6: First detected line

21

Pixel intensity in Hough space is related to the length of the line on the image.
Hough transform will always produce a line because I will always have residual
pixels left after star and noise removal. Because some trails encompass only a
short distance between two nearest image edges, I can not set a threshold value
for pixels intensities in Hough space. Solution to this problem is obvious. I need
to create a matrix similar to the one in section-2.3 and “drag” it along the line
described by line parameters to see if this is a line or a false detection. There is one
problem though, as mentioned above, but not very visible in Figure-3.6. Because
of binning (r, θ), it is impossible to detect precisely the correct line parameters
(m, b) and in large enough images, such as the images in question, this amounts to
a substantial deviation. My solution was to increase the size of the matrix, but this
is a very poor solution. The code snippet for this process is shown in Listing-3.3.

Listing 3.3: Testing for presence of a line
1 #retrive the rho and theta values
2 #for first detected line
3 rho = -hough[0][0][0]
4 theta = hough[0][0][1]
5 #calculate
6 m = -numpy.tan(theta)
7
8 bulbasaur = 0
9 charizard = 1
10 testy, testx = list(), list()
11 for x in range(10, n_x-10, 30):
12 testx.append(x)
13 y = int(m*x+rho)
14 testy.append(y)
15 aver = numpy.average(equ[x-10:x+10, y-10:y+10])
16 charizard+=1
17 if aver>=30: #about 50/400 iluminated pixels
18 bulbasaur+=1
19
20 percent=float(bulbasaur)/float(charizard)
21 print "{} percent match".format(percent)
22 if percent > 0.5:
23 return True, m, testx, testy, equ
24 else:
25 return False, m, testx, testy, equ

In Figure-3.7 light gray rectangles represent positions of matrix for which the av-
erage value of the matrix is bigger than or equal to 30, while dark gray rectangles
represent position where matrix failed to have its average value bigger than or
equal to 30. This shows how this kind of trail presence testing method is extremely
poor. Black gaps left behind by removing stars and the small deviations of detected
line from the trail occurring because of errors in detection and conversion of line
characteristics interfere profusely with testing trail presence. I have not tested this
algorithm on a larger scale (>100) images to determine detection confidence but I
am certain that it would be low mainly because of this last step.

22

Figure 3.7: Matrix positions

3.0.1 Housekeeping

I have not, so far, discussed the general outlay of the entire program but have in-
stead shown only out of context short code snippets. Apart of the despeckle func-
tion and the unsatisfying trail presence function (see Noise reduction in section-2.3
and end of chapter-3 for trail presence detection), modularity has been upheld rig-
orously. Every function that I was satisfied with was extracted into special defini-
tion and is functional as stand-alone modular code. Encapsulation is unimportant
for this code however it is still present at some level. Ironically for such an object
oriented language, encapsulation is not a fully supported Python feature. You des-
ignate a method private or protected via double underscore or a single underscore
respectfully, but the end result is just name obfuscation and all are still accessi-
ble2. Be that as it may, current code is still a work in progress and by the time it’s
finished I plan to move process field function and CSVRead function, which are
still outside the class for debugging purposes, inside the RemoveStars class and
make them private, leaving accessible for the end user only the class RemoveStars.
General overview of finished program should by then be similar to Listing-3.4.

2To quote what author of Python Guido Van Rossum has to say about this: “We are all adults
here!”

23

Listing 3.4: Code organization
1 class RemoveStars:
2 """
3 (run= , camcol={1-6}, field={all], filter={all})
4 Defines a convenience class for end user.
5 Use with caution execution time per image ˜28sec.
6 "Instant" use is possible, ie:
7 RemoveStars(run=2888).process()
8 RemoveStars(run=2888, camcol=1).process()
9 RemoveStars(run=2888, camcol=1, filter=’i’).process()
10 RemoveStars(run=2888, camcol=1, filter=’i’, field=139).

process()
11 Standard use still applies:
12 test = RemoveStars(run= ,[optional: camcol, filter, field

])
13 test.process()
14 init parameters
15 ----------------
16 Keywords:
17 run: run ID
18
19 Optional:
20 camcol: camera column ID
21 field: frame ID
22 filter: filter ID {u,g,r,i,z}
23 dependencies
24 ----------------
25 -numpy, scipy, sdsspy, esutil, fitsio, cv2, csv
26 -photoField.fits, runList.par and frame files for the run of

interest
27 """
28 def __init__(self, **kwargs):
29 #private initialization method
30 #calls _load() method
31 def __load(self):
32 #unpacks variables sent to init
33 #reports error for uncompleted variable sets
34 #instantiates
35 def process(self):
36 #void public method, Convenience function that runs
37 #process_field() for various inputs.
38 def __process_field(_run, _camcol, _filter, _field):
39 #private method, processes images as described so far
40 def _run_info(self), _despeckle(self), _CSVRead(path)
41 _trail_confirm(self), _HistEq(self) etc..:
42 #protected methods called by __process_field

24

Chapter 4

Conclusions and
recommendations

4.1 Conclusions

This program represents a robust and relatively fast solution for the problem of line
detection in SDSS images. There is hardly part a of code not in need of refining and
for most issues I already have a general solution. The biggest obstacle to perfecting
this code I see in trail confirmation. I have to yet design a clean fast solution for
this issue.

4.2 Recommendations

First step of image processing is setting negative values in the image to zero us-
ing a pixel-by-pixel iteration which can be avoided with ndarray.where(condition)
function which should drastically reduce run time. In future versions bug reports
should be saved into files and a flag system should be devised for recovery purposes
in case code crashes mid-execution. I should also spend some time studying the
scipy.KDTree functionality for determining the closest neighbors, which seems to
have promising qualities for both noise reduction and trail confirmation section. As
for the unfinished functionality for star size approximation and the untrustworthy
coordinate conversion, there are CAS products stored in FITS file formats that con-
tain more data about detected objects than what can be accessed by an SQL query.
Among the additional information there are keywords describing type of object
(galaxy/star) and provide various star radii or, in case of galaxy, provide its eccen-
tricity. Also there seem to be keywords describing centroid coordinates in pixel
values, which would avoid the need for numerical coordinate conversion. Unfor-
tunately some of the entries are poorly described and there is obvious discrepancy
between SDSS file specifications and actual file content located on their servers.
Code should be tested on a larger batch of sample images of various quality for
which the expected results are known so that detection rates can be estimated.

25

Appendix A

Munu2Pix conversion function

Listing A.1: Munu2Pix function
1
2 def munu2pix(self, field, filter, mu, nu, color=0.3):
3 """
4 Convert between SDSS great circle coordinates and
5 pixel coordinates.
6 Solve for the row,col that are roots of the equation
7 row,col -> mu,nu
8 This is because we only have the forward transform
9 parameters
10 ----------
11 field: integer
12 SDSS field number
13 mu,nu:
14 SDSS great circle coordinates in degrees
15 outputs
16 -------
17 row,col:
18 pixel values
19 """
20 import scipy.optimize
21 mu,nu,are_scalar=get_array_args(mu,nu,"mu","nu")
22 color=self._get_color(color, mu.size)
23
24 trans=self.trans
25 w=self._get_field(field)
26
27 fnum=self._get_filter_num(filter)
28
29 if ’f’ in trans.dtype.names:
30 fname=’f’
31 else:
32 fname=’ff’
33
34
35 # pack away this data for the optimizer
36

26

37 fd={’a’:trans[’a’][w,fnum],
38 ’b’:trans[’b’][w,fnum],
39 ’c’:trans[’c’][w,fnum],
40 ’d’:trans[’d’][w,fnum],
41 ’e’:trans[’e’][w,fnum],
42 ’f’:trans[fname][w,fnum],
43 ’drow0’:trans[’drow0’][w,fnum],
44 ’drow1’:trans[’drow1’][w,fnum],
45 ’drow2’:trans[’drow2’][w,fnum],
46 ’drow3’:trans[’drow3’][w,fnum],
47
48 ’dcol0’:trans[’dcol0’][w,fnum],
49 ’dcol1’:trans[’dcol1’][w,fnum],
50 ’dcol2’:trans[’dcol2’][w,fnum],
51 ’dcol3’:trans[’dcol3’][w,fnum],
52
53 ’csrow’:trans[’csrow’][w,fnum],
54 ’cscol’:trans[’cscol’][w,fnum],
55 ’ccrow’:trans[’ccrow’][w,fnum],
56 ’cccol’:trans[’cccol’][w,fnum],
57 ’color0’:trans[’ricut’][w,fnum]}
58
59 self._field_data=fd
60
61
62 det = fd[’b’]*fd[’f’] - fd[’c’]*fd[’e’]
63 mudiff = mu - fd[’a’]
64 nudiff = nu - fd[’d’]
65 row_guess = (mudiff*fd[’f’] - fd[’c’]*nudiff)/det
66 col_guess = (fd[’b’]*nudiff - mudiff*fd[’e’])/det
67
68 row=zeros(mu.size,dtype=’f8’)
69 col=zeros(mu.size,dtype=’f8’)
70 for i in xrange(mu.size):
71 self._tmp_color=color[i]
72 self._tmp_munu=array([mu[i],nu[i]])
73 rowcol_guess=array([row_guess[i], col_guess[i]])
74
75 rowcol = scipy.optimize.fsolve(self._pix2munu_for_fit,

rowcol_guess)
76 row[i] = rowcol[0]
77 col[i] = rowcol[1]
78
79 if are_scalar:
80 row=row[0]
81 col=col[0]
82
83 return row,col

27

Appendix B

Full code listing

Listing B.1: Full code listing
1 import csv
2 import fitsio
3 import sdsspy
4 import numpy
5 import scipy.ndimage as nd
6 import scipy
7 import astrometry
8 import cv2
9
10 #do NOT use ’path’ as a variable in program,
11 #it’s a dummy test variable
12 #consider using sdsspy.files.filename() instead
13 path = ’/home/dino/Desktop/test_slike/boss’
14
15 import gc
16 import timeit
17 import time
18
19 class Timer:
20 def __init__(self, timer=None, disable_gc=False, verbose=True)

:
21 if timer is None:
22 timer = timeit.default_timer
23 self.timer = timer
24 self.disable_gc = disable_gc
25 self.verbose = verbose
26 self.start = self.end = self.interval = None
27 def __enter__(self):
28 if self.disable_gc:
29 self.gc_state = gc.isenabled()
30 gc.disable()
31 self.start = self.timer()
32 return self
33 def __exit__(self, *args):
34 self.end = self.timer()
35 if self.disable_gc and self.gc_state:

28

36 gc.enable()
37 self.interval = self.end - self.start
38 if self.verbose:
39 print(’time taken: %f seconds’ % self.interval)
40
41 def CSVRead (path):
42 """
43 Defines a function that reads CSV file given by
44 (str) path into a list of dictionaries.
45 Returned list is arranged as
46 {[ra:, dec:, u:, g:, r:, i:, z:],
47 ...}.
48 """
49 labels=[’ra’, ’de’, ’u’, ’g’, ’r’, ’i’, ’z’]
50 read = csv.DictReader(open(path), labels, delimiter=’,’,

quotechar=’"’)
51 lines = list()
52 for line in read:
53 lines.append(line)
54 return lines
55
56 def process_field(_run, _camcol, _filter, _field):
57 """
58 Function that removes stars from image.
59 init parameters
60 ----------------
61 Keywords:
62 run:
63 run ID
64 camcol:
65 camera column ID
66 field:
67 frame ID
68 filter:
69 filter ID (ugriz)
70 """
71 Coord = CSVRead(sdsspy.files.filename(’CSVCoord’, run=_run,

camcol=_camcol,
72 field=_field))
73 fname = sdsspy.files.filename(’frame’, run=_run, camcol=

_camcol,
74 field=_field, filter=_filter)
75
76 fits = fitsio.FITS(fname , mode=’rw’)
77 img = fits[0].read()
78 conv = astrometry.Astrom(run=_run, camcol=_camcol)
79
80 #faster alg then pix iteration?
81 for x in range (0, img.size/img[0].size, 1):
82 for y in range(0, img[0].size-1, 1):
83 if img[x, y] < 0.0:
84 img[x, y] = 0.0
85
86 starConv_errnum = int()

29

87 for star in Coord:
88 try:
89 ra = float(star[’ra’])
90 de = float(star[’de’])
91 xy = conv.eq2pix(_field, _filter, ra, de)
92 x, y=xy[0], xy[1]
93 #first hand star size approx, expRAd_ugriz,

petroR90_ugriz
94 #should work better. Diff between exp (mag fit only?)

and petro?
95 #Download fits coord files because of flags?
96 #http://www.sdss3.org/dr8/algorithms/bitmask_flags1.

php
97 #Converting arcsec to pix?
98 #Processing without petro or exp?
99 #rowc, colc no need to convert coords?

100 #for gal exp disk fit? de Vaucouleurs fit ln()?
101 img[x-30:x+30, y-30:y+30].fill(0.0)
102 except ValueError as err:
103 print err.message
104 starConv_errnum+=1
105 pass
106 print "{} coordinate conversions failed. \nTotal number of

stars \
107 on the image: {}".format(starConv_errnum, len(Coord))
108
109 scipy.misc.imsave(path+’/processing.png’, img)
110 #http://www.comp.nus.edu.sg/˜cs4243/conversion.html
111 #conversions don’t work, can’t convert ndarray directly to cv2

image
112 #WARNING CV2 MIRRORS THE IMAGE HORIZONTALY
113 gray_image = cv2.imread(path+’/processing.png’, cv2.

CV_LOAD_IMAGE_GRAYSCALE)
114
115 equ = cv2.equalizeHist(gray_image)
116
117 #faster alg then pix iteration?
118 n_x, n_y=equ.shape
119 for x in range (1, n_x-2, 1):
120 for y in range(1, n_y-2, 1):
121 if equ[x, y] != 0:
122 li = [equ[x-1, y+1], equ[x, y+1], equ[x+1, y+1],
123 equ[x-1, y], equ[x, y], equ[x+1, y],
124 equ[x-1, y-1], equ[x, y-1], equ[x+1, y-1]]
125 aver = numpy.average(li)
126 #first hand approx of average pix values?
127 #consider a better substitute?
128 if aver<=85:
129 equ[x, y]=0
130
131 hough = cv2.HoughLines(equ, 1, numpy.pi/180, 1)
132
133 rho = -hough[0][0][0]
134 theta = hough[0][0][1]

30

135 m = -numpy.tan(theta)
136
137 bulbasaur = 0
138 charizard = 1
139 testy, testx = list(), list()
140 for x in range(10, n_x-10, 30):
141 testx.append(x)
142 y = int(m*x+rho)
143 testy.append(y)
144 aver = numpy.average(equ[x-10:x+10, y-10:y+10])
145
146 charizard+=1
147 #lame first hand approx, find a better one
148 if aver>=30:
149 bulbasaur+=1
150 #draw rectangles for thesis
151 equ[x-10:x+10, y-10:y+10] = 220
152 else:
153 #draw rectangles for thesis
154 equ[x-10:x+10, y-10:y+10] = 90
155
156 scipy.misc.imsave(path+’/rectangles.png’, equ)
157 percent=float(bulbasaur)/float(charizard)
158 print "{} percent match".format(percent)
159
160 if percent > 0.5:
161 return True, rho, theta, m
162 else:
163 return False, rho, theta, m
164
165 #time taken: 28.756897 seconds for 2888
166 #time taken: 27.543327 seconds for 5972
167 #time taken: 30.423426 seconds for 2888
168 #time taken: 28.940095 seconds for 5972
169 #time taken: 27.989103 seconds for 2888
170
171 class RemoveStars:
172 """
173 (run= , camcol={1-6}, field={all], filter={all})
174 Defines a convenience class that goes through the entire run
175 and deletes stars from image. If camcol is sent the whole
176 run-camcol is processed. If run-camcol-filter-field is sent

only
177 that frame is processed.
178 Use with caution execution time per image ˜23sec.
179 Instant use is possible, ie:
180 RemoveStars(run=2888).process()
181 RemoveStars(run=2888, camcol=1).process()
182 RemoveStars(run=2888, camcol=1, filter=’i’).process()
183 RemoveStars(run=2888, camcol=1, filter=’i’, field=139).

process()
184 Standard use still applies:
185 test = RemoveStars(run= ,[optional: camcol, filter, field

])

31

186 test.process()
187 Processed images are placed in path+filename.png folder.
188 init parameters
189 ----------------
190 Keywords:
191 run:
192 run ID
193 Optional:
194 camcol:
195 camera column ID
196 field:
197 frame ID
198 filter:
199 filter ID {u,g,r,i,z}
200 dependencies
201 -------------
202 -numpy, scipy, sdsspy, esutil, fitsio
203 -photoField, runList.par and frame files for the run of

interest
204 """
205
206 def __init__(self, **kwargs):
207 self.kwargs=kwargs
208 self._load()
209
210 def _run_info(self):
211 rl = sdsspy.files.runlist()
212 w, = numpy.where(rl[’run’] == self._run)
213 if w.__len__() == 0:
214 raise ValueError("Run %s not found in runList.par" %

self._run)
215 startfield = rl[w][’startfield’][0]
216 endfield = rl[w][’endfield’][0]
217 return startfield, endfield
218
219 def _load(self):
220 self._run, self._camcol, self._field = int(), int(), int()
221 self._filter, self._pick = str(), str()
222 kwargs = self.kwargs
223
224 if ’run’ not in kwargs:
225 raise ValueError("send run= ")
226 self._run=kwargs[’run’]
227 self._pick = ’run’
228
229 if ’camcol’ in kwargs:
230 self._camcol = kwargs[’camcol’]
231 self._pick = ’camcol’
232
233 if ’field’ in kwargs:
234 if self._camcol is 0:
235 raise ValueError("send camcol= ")
236 self._field = kwargs[’field’]
237

32

238 if ’filter’ in kwargs:
239 if self._camcol is 0:
240 raise ValueError("send camcol= or camcol= and

field=")
241 else:
242 self._filter = kwargs[’filter’]
243 self._pick = ’camcol-filter’
244
245 if self._field is 0:
246 pass
247 else:
248 self._filter = kwargs[’filter’]
249 self._pick = ’field’
250
251 if (self._run and self._camcol and self._field != 0
252 and self._filter.__len__() == 0):
253 raise ValueError("send filter=")
254
255 def process(self):
256 """
257 Convenience function that runs process_field() for
258 various inputs.
259 """
260 if self._pick == ’run’:
261 startfield, endfield = self._run_info()
262 filters = (’u’, ’g’, ’r’, ’i’, ’z’)
263 camcols = (1, 2, 3, 4, 5, 6)
264 for i in range (0, 5, 1):
265 for j in range (0, 4, 1):
266 for _field in range (startfield, endfield, 1):
267 process_field(self._run, camcols[i],

filters[j], field)
268
269 if self._pick == ’camcol’:
270 startfield, endfield = self._run_info()
271 filters = (’u’, ’g’, ’r’, ’i’, ’z’)
272 for j in range(0, 4, 1):
273 for field in range (startfield, endfield, 1):
274 process_field(self._run, self._camcol, filters

[j], field)
275
276
277 if self._pick == ’camcol-filter’:
278 startfield, endfield = self._run_info()
279 for field in range (startfield, endfield, 1):
280 process_field(self._run, self._camcol, filters[j],

field)
281
282 if self._pick == ’field’:
283 img=process_field(self._run, self._camcol, self.

_filter, self._field)

33

Bibliography

C. P. Ahn, R. Alexandroff, C. Allende Prieto et al., The Ninth Data Release of the
Sloan Digital Sky Survey: First Spectroscopic Data from the SDSS-III Baryon
Oscillation Spectroscopic Survey, Astrophysical Journal Supplement 203 (2012)
21;

Bill Keel, Lecture Notes, http://www.astr.ua.edu/keel/techniques/astrom.html

Gray J., Slutz D., Szalay S. A., Thakar A. R., VandenBerg J., Kunszt Z. P.,
Stoughton C., Data Mining the SDSS SkyServer Database, Microsoft Corpo-
ration Technical Report MSR-TR-2002-01 (2002)

Jenniskens P. (2006). Meteor Showers and their Parent Comets. Cambridge Uni-
versity Press, Cambridge, U.K., 790 pp.

Whipple F. L. (1951). A Comet Model. II. Physical Relations for Comets and Me-
teors. Astrophys. J. 113, 464

Martins Z., Price C. M., Goldman N., Sephton, A. M., Burchell J. M. Shock syn-
thesis of amino acids from impacting cometary and icy planet surface analogues.
Nature Geoscience (2013)

Fernndez, Julio A. (2006). Comets. p. 315.

Whitman, K; Morbidelli, A; Jedicke, R (2006). ”The size−frequency distribution
of dormant Jupiter family comets”. Icarus 183: 101.

Calvet, N., & Gullbring, E. 1998, ApJ, 509, 802

Gunn, J. E.; Carr, M.; Rockosi, C.; Sekiguchi, M.; Berry, K.; Elms, B.; de Haas,
E.; Ivezić, Ž.;

34

	Introduction
	Data Access and Preparation for Line Detection
	Changes introduced to SDSSPY
	Coordinates input and conversion
	Histogram equalization and noise reduction

	Line detection
	Housekeeping

	Conclusions and recommendations
	Conclusions
	Recommendations

	Munu2Pix conversion function
	Full code listing
	Bibliography

